# pyright: reportMissingImports=false from __future__ import annotations from pandas._typing import ( FilePath, ReadBuffer, Scalar, StorageOptions, ) from pandas.compat._optional import import_optional_dependency from pandas.util._decorators import doc from pandas.core.shared_docs import _shared_docs from pandas.io.excel._base import BaseExcelReader class PyxlsbReader(BaseExcelReader): @doc(storage_options=_shared_docs["storage_options"]) def __init__( self, filepath_or_buffer: FilePath | ReadBuffer[bytes], storage_options: StorageOptions = None, ) -> None: """ Reader using pyxlsb engine. Parameters ---------- filepath_or_buffer : str, path object, or Workbook Object to be parsed. {storage_options} """ import_optional_dependency("pyxlsb") # This will call load_workbook on the filepath or buffer # And set the result to the book-attribute super().__init__(filepath_or_buffer, storage_options=storage_options) @property def _workbook_class(self): from pyxlsb import Workbook return Workbook def load_workbook(self, filepath_or_buffer: FilePath | ReadBuffer[bytes]): from pyxlsb import open_workbook # TODO: hack in buffer capability # This might need some modifications to the Pyxlsb library # Actual work for opening it is in xlsbpackage.py, line 20-ish return open_workbook(filepath_or_buffer) @property def sheet_names(self) -> list[str]: return self.book.sheets def get_sheet_by_name(self, name: str): self.raise_if_bad_sheet_by_name(name) return self.book.get_sheet(name) def get_sheet_by_index(self, index: int): self.raise_if_bad_sheet_by_index(index) # pyxlsb sheets are indexed from 1 onwards # There's a fix for this in the source, but the pypi package doesn't have it return self.book.get_sheet(index + 1) def _convert_cell(self, cell, convert_float: bool) -> Scalar: # TODO: there is no way to distinguish between floats and datetimes in pyxlsb # This means that there is no way to read datetime types from an xlsb file yet if cell.v is None: return "" # Prevents non-named columns from not showing up as Unnamed: i if isinstance(cell.v, float) and convert_float: val = int(cell.v) if val == cell.v: return val else: return float(cell.v) return cell.v def get_sheet_data( self, sheet, convert_float: bool, file_rows_needed: int | None = None, ) -> list[list[Scalar]]: data: list[list[Scalar]] = [] prevous_row_number = -1 # When sparse=True the rows can have different lengths and empty rows are # not returned. The cells are namedtuples of row, col, value (r, c, v). for row in sheet.rows(sparse=True): row_number = row[0].r converted_row = [self._convert_cell(cell, convert_float) for cell in row] while converted_row and converted_row[-1] == "": # trim trailing empty elements converted_row.pop() if converted_row: data.extend([[]] * (row_number - prevous_row_number - 1)) data.append(converted_row) prevous_row_number = row_number if file_rows_needed is not None and len(data) >= file_rows_needed: break if data: # extend rows to max_width max_width = max(len(data_row) for data_row in data) if min(len(data_row) for data_row in data) < max_width: empty_cell: list[Scalar] = [""] data = [ data_row + (max_width - len(data_row)) * empty_cell for data_row in data ] return data