""" Module responsible for execution of NDFrame.describe() method. Method NDFrame.describe() delegates actual execution to function describe_ndframe(). """ from __future__ import annotations from abc import ( ABC, abstractmethod, ) from typing import ( TYPE_CHECKING, Any, Callable, Hashable, Sequence, cast, ) import warnings import numpy as np from pandas._libs.tslibs import Timestamp from pandas._typing import ( DtypeObj, NDFrameT, npt, ) from pandas.util._exceptions import find_stack_level from pandas.util._validators import validate_percentile from pandas.core.dtypes.common import ( is_bool_dtype, is_complex_dtype, is_datetime64_any_dtype, is_extension_array_dtype, is_numeric_dtype, is_timedelta64_dtype, ) import pandas as pd from pandas.core.reshape.concat import concat from pandas.io.formats.format import format_percentiles if TYPE_CHECKING: from pandas import ( DataFrame, Series, ) def describe_ndframe( *, obj: NDFrameT, include: str | Sequence[str] | None, exclude: str | Sequence[str] | None, datetime_is_numeric: bool, percentiles: Sequence[float] | np.ndarray | None, ) -> NDFrameT: """Describe series or dataframe. Called from pandas.core.generic.NDFrame.describe() Parameters ---------- obj: DataFrame or Series Either dataframe or series to be described. include : 'all', list-like of dtypes or None (default), optional A white list of data types to include in the result. Ignored for ``Series``. exclude : list-like of dtypes or None (default), optional, A black list of data types to omit from the result. Ignored for ``Series``. datetime_is_numeric : bool, default False Whether to treat datetime dtypes as numeric. percentiles : list-like of numbers, optional The percentiles to include in the output. All should fall between 0 and 1. The default is ``[.25, .5, .75]``, which returns the 25th, 50th, and 75th percentiles. Returns ------- Dataframe or series description. """ percentiles = refine_percentiles(percentiles) describer: NDFrameDescriberAbstract if obj.ndim == 1: describer = SeriesDescriber( obj=cast("Series", obj), datetime_is_numeric=datetime_is_numeric, ) else: describer = DataFrameDescriber( obj=cast("DataFrame", obj), include=include, exclude=exclude, datetime_is_numeric=datetime_is_numeric, ) result = describer.describe(percentiles=percentiles) return cast(NDFrameT, result) class NDFrameDescriberAbstract(ABC): """Abstract class for describing dataframe or series. Parameters ---------- obj : Series or DataFrame Object to be described. datetime_is_numeric : bool Whether to treat datetime dtypes as numeric. """ def __init__(self, obj: DataFrame | Series, datetime_is_numeric: bool) -> None: self.obj = obj self.datetime_is_numeric = datetime_is_numeric @abstractmethod def describe(self, percentiles: Sequence[float] | np.ndarray) -> DataFrame | Series: """Do describe either series or dataframe. Parameters ---------- percentiles : list-like of numbers The percentiles to include in the output. """ class SeriesDescriber(NDFrameDescriberAbstract): """Class responsible for creating series description.""" obj: Series def describe(self, percentiles: Sequence[float] | np.ndarray) -> Series: describe_func = select_describe_func( self.obj, self.datetime_is_numeric, ) return describe_func(self.obj, percentiles) class DataFrameDescriber(NDFrameDescriberAbstract): """Class responsible for creating dataobj description. Parameters ---------- obj : DataFrame DataFrame to be described. include : 'all', list-like of dtypes or None A white list of data types to include in the result. exclude : list-like of dtypes or None A black list of data types to omit from the result. datetime_is_numeric : bool Whether to treat datetime dtypes as numeric. """ def __init__( self, obj: DataFrame, *, include: str | Sequence[str] | None, exclude: str | Sequence[str] | None, datetime_is_numeric: bool, ) -> None: self.include = include self.exclude = exclude if obj.ndim == 2 and obj.columns.size == 0: raise ValueError("Cannot describe a DataFrame without columns") super().__init__(obj, datetime_is_numeric=datetime_is_numeric) def describe(self, percentiles: Sequence[float] | np.ndarray) -> DataFrame: data = self._select_data() ldesc: list[Series] = [] for _, series in data.items(): describe_func = select_describe_func(series, self.datetime_is_numeric) ldesc.append(describe_func(series, percentiles)) col_names = reorder_columns(ldesc) d = concat( [x.reindex(col_names, copy=False) for x in ldesc], axis=1, sort=False, ) d.columns = data.columns.copy() return d def _select_data(self): """Select columns to be described.""" if (self.include is None) and (self.exclude is None): # when some numerics are found, keep only numerics default_include: list[npt.DTypeLike] = [np.number] if self.datetime_is_numeric: default_include.append("datetime") data = self.obj.select_dtypes(include=default_include) if len(data.columns) == 0: data = self.obj elif self.include == "all": if self.exclude is not None: msg = "exclude must be None when include is 'all'" raise ValueError(msg) data = self.obj else: data = self.obj.select_dtypes( include=self.include, exclude=self.exclude, ) return data def reorder_columns(ldesc: Sequence[Series]) -> list[Hashable]: """Set a convenient order for rows for display.""" names: list[Hashable] = [] ldesc_indexes = sorted((x.index for x in ldesc), key=len) for idxnames in ldesc_indexes: for name in idxnames: if name not in names: names.append(name) return names def describe_numeric_1d(series: Series, percentiles: Sequence[float]) -> Series: """Describe series containing numerical data. Parameters ---------- series : Series Series to be described. percentiles : list-like of numbers The percentiles to include in the output. """ from pandas import Series formatted_percentiles = format_percentiles(percentiles) stat_index = ["count", "mean", "std", "min"] + formatted_percentiles + ["max"] d = ( [series.count(), series.mean(), series.std(), series.min()] + series.quantile(percentiles).tolist() + [series.max()] ) # GH#48340 - always return float on non-complex numeric data dtype: DtypeObj | None if is_extension_array_dtype(series): dtype = pd.Float64Dtype() elif is_numeric_dtype(series) and not is_complex_dtype(series): dtype = np.dtype("float") else: dtype = None return Series(d, index=stat_index, name=series.name, dtype=dtype) def describe_categorical_1d( data: Series, percentiles_ignored: Sequence[float], ) -> Series: """Describe series containing categorical data. Parameters ---------- data : Series Series to be described. percentiles_ignored : list-like of numbers Ignored, but in place to unify interface. """ names = ["count", "unique", "top", "freq"] objcounts = data.value_counts() count_unique = len(objcounts[objcounts != 0]) if count_unique > 0: top, freq = objcounts.index[0], objcounts.iloc[0] dtype = None else: # If the DataFrame is empty, set 'top' and 'freq' to None # to maintain output shape consistency top, freq = np.nan, np.nan dtype = "object" result = [data.count(), count_unique, top, freq] from pandas import Series return Series(result, index=names, name=data.name, dtype=dtype) def describe_timestamp_as_categorical_1d( data: Series, percentiles_ignored: Sequence[float], ) -> Series: """Describe series containing timestamp data treated as categorical. Parameters ---------- data : Series Series to be described. percentiles_ignored : list-like of numbers Ignored, but in place to unify interface. """ names = ["count", "unique"] objcounts = data.value_counts() count_unique = len(objcounts[objcounts != 0]) result = [data.count(), count_unique] dtype = None if count_unique > 0: top, freq = objcounts.index[0], objcounts.iloc[0] tz = data.dt.tz asint = data.dropna().values.view("i8") top = Timestamp(top) if top.tzinfo is not None and tz is not None: # Don't tz_localize(None) if key is already tz-aware top = top.tz_convert(tz) else: top = top.tz_localize(tz) names += ["top", "freq", "first", "last"] result += [ top, freq, Timestamp(asint.min(), tz=tz), Timestamp(asint.max(), tz=tz), ] # If the DataFrame is empty, set 'top' and 'freq' to None # to maintain output shape consistency else: names += ["top", "freq"] result += [np.nan, np.nan] dtype = "object" from pandas import Series return Series(result, index=names, name=data.name, dtype=dtype) def describe_timestamp_1d(data: Series, percentiles: Sequence[float]) -> Series: """Describe series containing datetime64 dtype. Parameters ---------- data : Series Series to be described. percentiles : list-like of numbers The percentiles to include in the output. """ # GH-30164 from pandas import Series formatted_percentiles = format_percentiles(percentiles) stat_index = ["count", "mean", "min"] + formatted_percentiles + ["max"] d = ( [data.count(), data.mean(), data.min()] + data.quantile(percentiles).tolist() + [data.max()] ) return Series(d, index=stat_index, name=data.name) def select_describe_func( data: Series, datetime_is_numeric: bool, ) -> Callable: """Select proper function for describing series based on data type. Parameters ---------- data : Series Series to be described. datetime_is_numeric : bool Whether to treat datetime dtypes as numeric. """ if is_bool_dtype(data.dtype): return describe_categorical_1d elif is_numeric_dtype(data): return describe_numeric_1d elif is_datetime64_any_dtype(data.dtype): if datetime_is_numeric: return describe_timestamp_1d else: warnings.warn( "Treating datetime data as categorical rather than numeric in " "`.describe` is deprecated and will be removed in a future " "version of pandas. Specify `datetime_is_numeric=True` to " "silence this warning and adopt the future behavior now.", FutureWarning, stacklevel=find_stack_level(), ) return describe_timestamp_as_categorical_1d elif is_timedelta64_dtype(data.dtype): return describe_numeric_1d else: return describe_categorical_1d def refine_percentiles( percentiles: Sequence[float] | np.ndarray | None, ) -> np.ndarray[Any, np.dtype[np.float64]]: """ Ensure that percentiles are unique and sorted. Parameters ---------- percentiles : list-like of numbers, optional The percentiles to include in the output. """ if percentiles is None: return np.array([0.25, 0.5, 0.75]) # explicit conversion of `percentiles` to list percentiles = list(percentiles) # get them all to be in [0, 1] validate_percentile(percentiles) # median should always be included if 0.5 not in percentiles: percentiles.append(0.5) percentiles = np.asarray(percentiles) # sort and check for duplicates unique_pcts = np.unique(percentiles) assert percentiles is not None if len(unique_pcts) < len(percentiles): raise ValueError("percentiles cannot contain duplicates") return unique_pcts