""" Template for each `dtype` helper function for hashtable WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in """ {{py: # name, dtype, ttype, c_type, to_c_type dtypes = [('Complex128', 'complex128', 'complex128', 'khcomplex128_t', 'to_khcomplex128_t'), ('Complex64', 'complex64', 'complex64', 'khcomplex64_t', 'to_khcomplex64_t'), ('Float64', 'float64', 'float64', 'float64_t', ''), ('Float32', 'float32', 'float32', 'float32_t', ''), ('UInt64', 'uint64', 'uint64', 'uint64_t', ''), ('UInt32', 'uint32', 'uint32', 'uint32_t', ''), ('UInt16', 'uint16', 'uint16', 'uint16_t', ''), ('UInt8', 'uint8', 'uint8', 'uint8_t', ''), ('Object', 'object', 'pymap', 'object', ''), ('Int64', 'int64', 'int64', 'int64_t', ''), ('Int32', 'int32', 'int32', 'int32_t', ''), ('Int16', 'int16', 'int16', 'int16_t', ''), ('Int8', 'int8', 'int8', 'int8_t', '')] }} {{for name, dtype, ttype, c_type, to_c_type in dtypes}} @cython.wraparound(False) @cython.boundscheck(False) {{if dtype == 'object'}} cdef value_count_{{dtype}}(ndarray[{{dtype}}] values, bint dropna, const uint8_t[:] mask=None): {{else}} cdef value_count_{{dtype}}(const {{dtype}}_t[:] values, bint dropna, const uint8_t[:] mask=None): {{endif}} cdef: Py_ssize_t i = 0 Py_ssize_t n = len(values) kh_{{ttype}}_t *table # Don't use Py_ssize_t, since table.n_buckets is unsigned khiter_t k {{c_type}} val int ret = 0 bint uses_mask = mask is not None bint isna_entry = False if uses_mask and not dropna: raise NotImplementedError("uses_mask not implemented with dropna=False") # we track the order in which keys are first seen (GH39009), # khash-map isn't insertion-ordered, thus: # table maps keys to counts # result_keys remembers the original order of keys result_keys = {{name}}Vector() table = kh_init_{{ttype}}() {{if dtype == 'object'}} if uses_mask: raise NotImplementedError("uses_mask not implemented with object dtype") kh_resize_{{ttype}}(table, n // 10) for i in range(n): val = values[i] if not dropna or not checknull(val): k = kh_get_{{ttype}}(table, {{to_c_type}}val) if k != table.n_buckets: table.vals[k] += 1 else: k = kh_put_{{ttype}}(table, {{to_c_type}}val, &ret) table.vals[k] = 1 result_keys.append(val) {{else}} kh_resize_{{ttype}}(table, n) for i in range(n): val = {{to_c_type}}(values[i]) if dropna: if uses_mask: isna_entry = mask[i] else: isna_entry = is_nan_{{c_type}}(val) if not dropna or not isna_entry: k = kh_get_{{ttype}}(table, val) if k != table.n_buckets: table.vals[k] += 1 else: k = kh_put_{{ttype}}(table, val, &ret) table.vals[k] = 1 result_keys.append(val) {{endif}} # collect counts in the order corresponding to result_keys: cdef: int64_t[::1] result_counts = np.empty(table.size, dtype=np.int64) for i in range(table.size): {{if dtype == 'object'}} k = kh_get_{{ttype}}(table, result_keys.data[i]) {{else}} k = kh_get_{{ttype}}(table, result_keys.data.data[i]) {{endif}} result_counts[i] = table.vals[k] kh_destroy_{{ttype}}(table) return result_keys.to_array(), result_counts.base @cython.wraparound(False) @cython.boundscheck(False) {{if dtype == 'object'}} cdef duplicated_{{dtype}}(ndarray[{{dtype}}] values, object keep='first'): {{else}} cdef duplicated_{{dtype}}(const {{dtype}}_t[:] values, object keep='first'): {{endif}} cdef: int ret = 0 {{if dtype != 'object'}} {{c_type}} value {{else}} PyObject* value {{endif}} Py_ssize_t i, n = len(values) khiter_t k kh_{{ttype}}_t *table = kh_init_{{ttype}}() ndarray[uint8_t, ndim=1, cast=True] out = np.empty(n, dtype='bool') kh_resize_{{ttype}}(table, min(kh_needed_n_buckets(n), SIZE_HINT_LIMIT)) if keep not in ('last', 'first', False): raise ValueError('keep must be either "first", "last" or False') if keep == 'last': {{if dtype == 'object'}} if True: {{else}} with nogil: {{endif}} for i in range(n - 1, -1, -1): # equivalent: range(n)[::-1], which cython doesn't like in nogil value = {{to_c_type}}(values[i]) kh_put_{{ttype}}(table, value, &ret) out[i] = ret == 0 elif keep == 'first': {{if dtype == 'object'}} if True: {{else}} with nogil: {{endif}} for i in range(n): value = {{to_c_type}}(values[i]) kh_put_{{ttype}}(table, value, &ret) out[i] = ret == 0 else: {{if dtype == 'object'}} if True: {{else}} with nogil: {{endif}} for i in range(n): value = {{to_c_type}}(values[i]) k = kh_get_{{ttype}}(table, value) if k != table.n_buckets: out[table.vals[k]] = 1 out[i] = 1 else: k = kh_put_{{ttype}}(table, value, &ret) table.vals[k] = i out[i] = 0 kh_destroy_{{ttype}}(table) return out # ---------------------------------------------------------------------- # Membership # ---------------------------------------------------------------------- @cython.wraparound(False) @cython.boundscheck(False) {{if dtype == 'object'}} cdef ismember_{{dtype}}(ndarray[{{c_type}}] arr, ndarray[{{c_type}}] values): {{else}} cdef ismember_{{dtype}}(const {{dtype}}_t[:] arr, const {{dtype}}_t[:] values): {{endif}} """ Return boolean of values in arr on an element by-element basis Parameters ---------- arr : {{dtype}} ndarray values : {{dtype}} ndarray Returns ------- boolean ndarray len of (arr) """ cdef: Py_ssize_t i, n khiter_t k int ret = 0 ndarray[uint8_t] result {{if dtype == "object"}} PyObject* val {{else}} {{c_type}} val {{endif}} kh_{{ttype}}_t *table = kh_init_{{ttype}}() # construct the table n = len(values) kh_resize_{{ttype}}(table, n) {{if dtype == 'object'}} if True: {{else}} with nogil: {{endif}} for i in range(n): val = {{to_c_type}}(values[i]) kh_put_{{ttype}}(table, val, &ret) # test membership n = len(arr) result = np.empty(n, dtype=np.uint8) {{if dtype == 'object'}} if True: {{else}} with nogil: {{endif}} for i in range(n): val = {{to_c_type}}(arr[i]) k = kh_get_{{ttype}}(table, val) result[i] = (k != table.n_buckets) kh_destroy_{{ttype}}(table) return result.view(np.bool_) # ---------------------------------------------------------------------- # Mode Computations # ---------------------------------------------------------------------- {{endfor}} ctypedef fused htfunc_t: numeric_object_t complex128_t complex64_t cpdef value_count(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None): if htfunc_t is object: return value_count_object(values, dropna, mask=mask) elif htfunc_t is int8_t: return value_count_int8(values, dropna, mask=mask) elif htfunc_t is int16_t: return value_count_int16(values, dropna, mask=mask) elif htfunc_t is int32_t: return value_count_int32(values, dropna, mask=mask) elif htfunc_t is int64_t: return value_count_int64(values, dropna, mask=mask) elif htfunc_t is uint8_t: return value_count_uint8(values, dropna, mask=mask) elif htfunc_t is uint16_t: return value_count_uint16(values, dropna, mask=mask) elif htfunc_t is uint32_t: return value_count_uint32(values, dropna, mask=mask) elif htfunc_t is uint64_t: return value_count_uint64(values, dropna, mask=mask) elif htfunc_t is float64_t: return value_count_float64(values, dropna, mask=mask) elif htfunc_t is float32_t: return value_count_float32(values, dropna, mask=mask) elif htfunc_t is complex128_t: return value_count_complex128(values, dropna, mask=mask) elif htfunc_t is complex64_t: return value_count_complex64(values, dropna, mask=mask) else: raise TypeError(values.dtype) cpdef duplicated(ndarray[htfunc_t] values, object keep="first"): if htfunc_t is object: return duplicated_object(values, keep) elif htfunc_t is int8_t: return duplicated_int8(values, keep) elif htfunc_t is int16_t: return duplicated_int16(values, keep) elif htfunc_t is int32_t: return duplicated_int32(values, keep) elif htfunc_t is int64_t: return duplicated_int64(values, keep) elif htfunc_t is uint8_t: return duplicated_uint8(values, keep) elif htfunc_t is uint16_t: return duplicated_uint16(values, keep) elif htfunc_t is uint32_t: return duplicated_uint32(values, keep) elif htfunc_t is uint64_t: return duplicated_uint64(values, keep) elif htfunc_t is float64_t: return duplicated_float64(values, keep) elif htfunc_t is float32_t: return duplicated_float32(values, keep) elif htfunc_t is complex128_t: return duplicated_complex128(values, keep) elif htfunc_t is complex64_t: return duplicated_complex64(values, keep) else: raise TypeError(values.dtype) cpdef ismember(ndarray[htfunc_t] arr, ndarray[htfunc_t] values): if htfunc_t is object: return ismember_object(arr, values) elif htfunc_t is int8_t: return ismember_int8(arr, values) elif htfunc_t is int16_t: return ismember_int16(arr, values) elif htfunc_t is int32_t: return ismember_int32(arr, values) elif htfunc_t is int64_t: return ismember_int64(arr, values) elif htfunc_t is uint8_t: return ismember_uint8(arr, values) elif htfunc_t is uint16_t: return ismember_uint16(arr, values) elif htfunc_t is uint32_t: return ismember_uint32(arr, values) elif htfunc_t is uint64_t: return ismember_uint64(arr, values) elif htfunc_t is float64_t: return ismember_float64(arr, values) elif htfunc_t is float32_t: return ismember_float32(arr, values) elif htfunc_t is complex128_t: return ismember_complex128(arr, values) elif htfunc_t is complex64_t: return ismember_complex64(arr, values) else: raise TypeError(values.dtype) @cython.wraparound(False) @cython.boundscheck(False) def mode(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None): # TODO(cython3): use const htfunct_t[:] cdef: ndarray[htfunc_t] keys ndarray[htfunc_t] modes int64_t[::1] counts int64_t count, max_count = -1 Py_ssize_t nkeys, k, j = 0 keys, counts = value_count(values, dropna, mask=mask) nkeys = len(keys) modes = np.empty(nkeys, dtype=values.dtype) if htfunc_t is not object: with nogil: for k in range(nkeys): count = counts[k] if count == max_count: j += 1 elif count > max_count: max_count = count j = 0 else: continue modes[j] = keys[k] else: for k in range(nkeys): count = counts[k] if count == max_count: j += 1 elif count > max_count: max_count = count j = 0 else: continue modes[j] = keys[k] return modes[:j + 1] {{py: # name, dtype, ttype, c_type dtypes = [('Int64', 'int64', 'int64', 'int64_t'), ('Int32', 'int32', 'int32', 'int32_t'), ] }} {{for name, dtype, ttype, c_type in dtypes}} @cython.wraparound(False) @cython.boundscheck(False) def _unique_label_indices_{{dtype}}(const {{c_type}}[:] labels) -> ndarray: """ Indices of the first occurrences of the unique labels *excluding* -1. equivalent to: np.unique(labels, return_index=True)[1] """ cdef: int ret = 0 Py_ssize_t i, n = len(labels) kh_{{ttype}}_t *table = kh_init_{{ttype}}() {{name}}Vector idx = {{name}}Vector() ndarray[{{c_type}}, ndim=1] arr {{name}}VectorData *ud = idx.data kh_resize_{{ttype}}(table, min(kh_needed_n_buckets(n), SIZE_HINT_LIMIT)) with nogil: for i in range(n): kh_put_{{ttype}}(table, labels[i], &ret) if ret != 0: if needs_resize(ud): with gil: idx.resize() append_data_{{ttype}}(ud, i) kh_destroy_{{ttype}}(table) arr = idx.to_array() arr = arr[np.asarray(labels)[arr].argsort()] return arr[1:] if arr.size != 0 and labels[arr[0]] == -1 else arr {{endfor}}