import numpy as np import functools import sys import pytest from numpy.lib.shape_base import ( apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit, vsplit, dstack, column_stack, kron, tile, expand_dims, take_along_axis, put_along_axis ) from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, assert_warns ) IS_64BIT = sys.maxsize > 2**32 def _add_keepdims(func): """ hack in keepdims behavior into a function taking an axis """ @functools.wraps(func) def wrapped(a, axis, **kwargs): res = func(a, axis=axis, **kwargs) if axis is None: axis = 0 # res is now a scalar, so we can insert this anywhere return np.expand_dims(res, axis=axis) return wrapped class TestTakeAlongAxis: def test_argequivalent(self): """ Test it translates from arg to """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis)) def test_invalid(self): """ Test it errors when indices has too few dimensions """ a = np.ones((10, 10)) ai = np.ones((10, 2), dtype=np.intp) # sanity check take_along_axis(a, ai, axis=1) # not enough indices assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1) # bool arrays not allowed assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1) # float arrays not allowed assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1) # invalid axis assert_raises(np.AxisError, take_along_axis, a, ai, axis=10) def test_empty(self): """ Test everything is ok with empty results, even with inserted dims """ a = np.ones((3, 4, 5)) ai = np.ones((3, 0, 5), dtype=np.intp) actual = take_along_axis(a, ai, axis=1) assert_equal(actual.shape, ai.shape) def test_broadcast(self): """ Test that non-indexing dimensions are broadcast in both directions """ a = np.ones((3, 4, 1)) ai = np.ones((1, 2, 5), dtype=np.intp) actual = take_along_axis(a, ai, axis=1) assert_equal(actual.shape, (3, 2, 5)) class TestPutAlongAxis: def test_replace_max(self): a_base = np.array([[10, 30, 20], [60, 40, 50]]) for axis in list(range(a_base.ndim)) + [None]: # we mutate this in the loop a = a_base.copy() # replace the max with a small value i_max = _add_keepdims(np.argmax)(a, axis=axis) put_along_axis(a, i_max, -99, axis=axis) # find the new minimum, which should max i_min = _add_keepdims(np.argmin)(a, axis=axis) assert_equal(i_min, i_max) def test_broadcast(self): """ Test that non-indexing dimensions are broadcast in both directions """ a = np.ones((3, 4, 1)) ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4 put_along_axis(a, ai, 20, axis=1) assert_equal(take_along_axis(a, ai, axis=1), 20) class TestApplyAlongAxis: def test_simple(self): a = np.ones((20, 10), 'd') assert_array_equal( apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1])) def test_simple101(self): a = np.ones((10, 101), 'd') assert_array_equal( apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1])) def test_3d(self): a = np.arange(27).reshape((3, 3, 3)) assert_array_equal(apply_along_axis(np.sum, 0, a), [[27, 30, 33], [36, 39, 42], [45, 48, 51]]) def test_preserve_subclass(self): def double(row): return row * 2 class MyNDArray(np.ndarray): pass m = np.array([[0, 1], [2, 3]]).view(MyNDArray) expected = np.array([[0, 2], [4, 6]]).view(MyNDArray) result = apply_along_axis(double, 0, m) assert_(isinstance(result, MyNDArray)) assert_array_equal(result, expected) result = apply_along_axis(double, 1, m) assert_(isinstance(result, MyNDArray)) assert_array_equal(result, expected) def test_subclass(self): class MinimalSubclass(np.ndarray): data = 1 def minimal_function(array): return array.data a = np.zeros((6, 3)).view(MinimalSubclass) assert_array_equal( apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1]) ) def test_scalar_array(self, cls=np.ndarray): a = np.ones((6, 3)).view(cls) res = apply_along_axis(np.sum, 0, a) assert_(isinstance(res, cls)) assert_array_equal(res, np.array([6, 6, 6]).view(cls)) def test_0d_array(self, cls=np.ndarray): def sum_to_0d(x): """ Sum x, returning a 0d array of the same class """ assert_equal(x.ndim, 1) return np.squeeze(np.sum(x, keepdims=True)) a = np.ones((6, 3)).view(cls) res = apply_along_axis(sum_to_0d, 0, a) assert_(isinstance(res, cls)) assert_array_equal(res, np.array([6, 6, 6]).view(cls)) res = apply_along_axis(sum_to_0d, 1, a) assert_(isinstance(res, cls)) assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls)) def test_axis_insertion(self, cls=np.ndarray): def f1to2(x): """produces an asymmetric non-square matrix from x""" assert_equal(x.ndim, 1) return (x[::-1] * x[1:,None]).view(cls) a2d = np.arange(6*3).reshape((6, 3)) # 2d insertion along first axis actual = apply_along_axis(f1to2, 0, a2d) expected = np.stack([ f1to2(a2d[:,i]) for i in range(a2d.shape[1]) ], axis=-1).view(cls) assert_equal(type(actual), type(expected)) assert_equal(actual, expected) # 2d insertion along last axis actual = apply_along_axis(f1to2, 1, a2d) expected = np.stack([ f1to2(a2d[i,:]) for i in range(a2d.shape[0]) ], axis=0).view(cls) assert_equal(type(actual), type(expected)) assert_equal(actual, expected) # 3d insertion along middle axis a3d = np.arange(6*5*3).reshape((6, 5, 3)) actual = apply_along_axis(f1to2, 1, a3d) expected = np.stack([ np.stack([ f1to2(a3d[i,:,j]) for i in range(a3d.shape[0]) ], axis=0) for j in range(a3d.shape[2]) ], axis=-1).view(cls) assert_equal(type(actual), type(expected)) assert_equal(actual, expected) def test_subclass_preservation(self): class MinimalSubclass(np.ndarray): pass self.test_scalar_array(MinimalSubclass) self.test_0d_array(MinimalSubclass) self.test_axis_insertion(MinimalSubclass) def test_axis_insertion_ma(self): def f1to2(x): """produces an asymmetric non-square matrix from x""" assert_equal(x.ndim, 1) res = x[::-1] * x[1:,None] return np.ma.masked_where(res%5==0, res) a = np.arange(6*3).reshape((6, 3)) res = apply_along_axis(f1to2, 0, a) assert_(isinstance(res, np.ma.masked_array)) assert_equal(res.ndim, 3) assert_array_equal(res[:,:,0].mask, f1to2(a[:,0]).mask) assert_array_equal(res[:,:,1].mask, f1to2(a[:,1]).mask) assert_array_equal(res[:,:,2].mask, f1to2(a[:,2]).mask) def test_tuple_func1d(self): def sample_1d(x): return x[1], x[0] res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]])) assert_array_equal(res, np.array([[2, 1], [4, 3]])) def test_empty(self): # can't apply_along_axis when there's no chance to call the function def never_call(x): assert_(False) # should never be reached a = np.empty((0, 0)) assert_raises(ValueError, np.apply_along_axis, never_call, 0, a) assert_raises(ValueError, np.apply_along_axis, never_call, 1, a) # but it's sometimes ok with some non-zero dimensions def empty_to_1(x): assert_(len(x) == 0) return 1 a = np.empty((10, 0)) actual = np.apply_along_axis(empty_to_1, 1, a) assert_equal(actual, np.ones(10)) assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a) def test_with_iterable_object(self): # from issue 5248 d = np.array([ [{1, 11}, {2, 22}, {3, 33}], [{4, 44}, {5, 55}, {6, 66}] ]) actual = np.apply_along_axis(lambda a: set.union(*a), 0, d) expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}]) assert_equal(actual, expected) # issue 8642 - assert_equal doesn't detect this! for i in np.ndindex(actual.shape): assert_equal(type(actual[i]), type(expected[i])) class TestApplyOverAxes: def test_simple(self): a = np.arange(24).reshape(2, 3, 4) aoa_a = apply_over_axes(np.sum, a, [0, 2]) assert_array_equal(aoa_a, np.array([[[60], [92], [124]]])) class TestExpandDims: def test_functionality(self): s = (2, 3, 4, 5) a = np.empty(s) for axis in range(-5, 4): b = expand_dims(a, axis) assert_(b.shape[axis] == 1) assert_(np.squeeze(b).shape == s) def test_axis_tuple(self): a = np.empty((3, 3, 3)) assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3) assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1) assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1) assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3) def test_axis_out_of_range(self): s = (2, 3, 4, 5) a = np.empty(s) assert_raises(np.AxisError, expand_dims, a, -6) assert_raises(np.AxisError, expand_dims, a, 5) a = np.empty((3, 3, 3)) assert_raises(np.AxisError, expand_dims, a, (0, -6)) assert_raises(np.AxisError, expand_dims, a, (0, 5)) def test_repeated_axis(self): a = np.empty((3, 3, 3)) assert_raises(ValueError, expand_dims, a, axis=(1, 1)) def test_subclasses(self): a = np.arange(10).reshape((2, 5)) a = np.ma.array(a, mask=a%3 == 0) expanded = np.expand_dims(a, axis=1) assert_(isinstance(expanded, np.ma.MaskedArray)) assert_equal(expanded.shape, (2, 1, 5)) assert_equal(expanded.mask.shape, (2, 1, 5)) class TestArraySplit: def test_integer_0_split(self): a = np.arange(10) assert_raises(ValueError, array_split, a, 0) def test_integer_split(self): a = np.arange(10) res = array_split(a, 1) desired = [np.arange(10)] compare_results(res, desired) res = array_split(a, 2) desired = [np.arange(5), np.arange(5, 10)] compare_results(res, desired) res = array_split(a, 3) desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)] compare_results(res, desired) res = array_split(a, 4) desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8), np.arange(8, 10)] compare_results(res, desired) res = array_split(a, 5) desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), np.arange(6, 8), np.arange(8, 10)] compare_results(res, desired) res = array_split(a, 6) desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 7) desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 8) desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 9) desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 10) desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3), np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 11) desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3), np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10), np.array([])] compare_results(res, desired) def test_integer_split_2D_rows(self): a = np.array([np.arange(10), np.arange(10)]) res = array_split(a, 3, axis=0) tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), np.zeros((0, 10))] compare_results(res, tgt) assert_(a.dtype.type is res[-1].dtype.type) # Same thing for manual splits: res = array_split(a, [0, 1], axis=0) tgt = [np.zeros((0, 10)), np.array([np.arange(10)]), np.array([np.arange(10)])] compare_results(res, tgt) assert_(a.dtype.type is res[-1].dtype.type) def test_integer_split_2D_cols(self): a = np.array([np.arange(10), np.arange(10)]) res = array_split(a, 3, axis=-1) desired = [np.array([np.arange(4), np.arange(4)]), np.array([np.arange(4, 7), np.arange(4, 7)]), np.array([np.arange(7, 10), np.arange(7, 10)])] compare_results(res, desired) def test_integer_split_2D_default(self): """ This will fail if we change default axis """ a = np.array([np.arange(10), np.arange(10)]) res = array_split(a, 3) tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), np.zeros((0, 10))] compare_results(res, tgt) assert_(a.dtype.type is res[-1].dtype.type) # perhaps should check higher dimensions @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform") def test_integer_split_2D_rows_greater_max_int32(self): a = np.broadcast_to([0], (1 << 32, 2)) res = array_split(a, 4) chunk = np.broadcast_to([0], (1 << 30, 2)) tgt = [chunk] * 4 for i in range(len(tgt)): assert_equal(res[i].shape, tgt[i].shape) def test_index_split_simple(self): a = np.arange(10) indices = [1, 5, 7] res = array_split(a, indices, axis=-1) desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7), np.arange(7, 10)] compare_results(res, desired) def test_index_split_low_bound(self): a = np.arange(10) indices = [0, 5, 7] res = array_split(a, indices, axis=-1) desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), np.arange(7, 10)] compare_results(res, desired) def test_index_split_high_bound(self): a = np.arange(10) indices = [0, 5, 7, 10, 12] res = array_split(a, indices, axis=-1) desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), np.arange(7, 10), np.array([]), np.array([])] compare_results(res, desired) class TestSplit: # The split function is essentially the same as array_split, # except that it test if splitting will result in an # equal split. Only test for this case. def test_equal_split(self): a = np.arange(10) res = split(a, 2) desired = [np.arange(5), np.arange(5, 10)] compare_results(res, desired) def test_unequal_split(self): a = np.arange(10) assert_raises(ValueError, split, a, 3) class TestColumnStack: def test_non_iterable(self): assert_raises(TypeError, column_stack, 1) def test_1D_arrays(self): # example from docstring a = np.array((1, 2, 3)) b = np.array((2, 3, 4)) expected = np.array([[1, 2], [2, 3], [3, 4]]) actual = np.column_stack((a, b)) assert_equal(actual, expected) def test_2D_arrays(self): # same as hstack 2D docstring example a = np.array([[1], [2], [3]]) b = np.array([[2], [3], [4]]) expected = np.array([[1, 2], [2, 3], [3, 4]]) actual = np.column_stack((a, b)) assert_equal(actual, expected) def test_generator(self): with assert_warns(FutureWarning): column_stack((np.arange(3) for _ in range(2))) class TestDstack: def test_non_iterable(self): assert_raises(TypeError, dstack, 1) def test_0D_array(self): a = np.array(1) b = np.array(2) res = dstack([a, b]) desired = np.array([[[1, 2]]]) assert_array_equal(res, desired) def test_1D_array(self): a = np.array([1]) b = np.array([2]) res = dstack([a, b]) desired = np.array([[[1, 2]]]) assert_array_equal(res, desired) def test_2D_array(self): a = np.array([[1], [2]]) b = np.array([[1], [2]]) res = dstack([a, b]) desired = np.array([[[1, 1]], [[2, 2, ]]]) assert_array_equal(res, desired) def test_2D_array2(self): a = np.array([1, 2]) b = np.array([1, 2]) res = dstack([a, b]) desired = np.array([[[1, 1], [2, 2]]]) assert_array_equal(res, desired) def test_generator(self): with assert_warns(FutureWarning): dstack((np.arange(3) for _ in range(2))) # array_split has more comprehensive test of splitting. # only do simple test on hsplit, vsplit, and dsplit class TestHsplit: """Only testing for integer splits. """ def test_non_iterable(self): assert_raises(ValueError, hsplit, 1, 1) def test_0D_array(self): a = np.array(1) try: hsplit(a, 2) assert_(0) except ValueError: pass def test_1D_array(self): a = np.array([1, 2, 3, 4]) res = hsplit(a, 2) desired = [np.array([1, 2]), np.array([3, 4])] compare_results(res, desired) def test_2D_array(self): a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) res = hsplit(a, 2) desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])] compare_results(res, desired) class TestVsplit: """Only testing for integer splits. """ def test_non_iterable(self): assert_raises(ValueError, vsplit, 1, 1) def test_0D_array(self): a = np.array(1) assert_raises(ValueError, vsplit, a, 2) def test_1D_array(self): a = np.array([1, 2, 3, 4]) try: vsplit(a, 2) assert_(0) except ValueError: pass def test_2D_array(self): a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) res = vsplit(a, 2) desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])] compare_results(res, desired) class TestDsplit: # Only testing for integer splits. def test_non_iterable(self): assert_raises(ValueError, dsplit, 1, 1) def test_0D_array(self): a = np.array(1) assert_raises(ValueError, dsplit, a, 2) def test_1D_array(self): a = np.array([1, 2, 3, 4]) assert_raises(ValueError, dsplit, a, 2) def test_2D_array(self): a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) try: dsplit(a, 2) assert_(0) except ValueError: pass def test_3D_array(self): a = np.array([[[1, 2, 3, 4], [1, 2, 3, 4]], [[1, 2, 3, 4], [1, 2, 3, 4]]]) res = dsplit(a, 2) desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]), np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])] compare_results(res, desired) class TestSqueeze: def test_basic(self): from numpy.random import rand a = rand(20, 10, 10, 1, 1) b = rand(20, 1, 10, 1, 20) c = rand(1, 1, 20, 10) assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10))) assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20))) assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10))) # Squeezing to 0-dim should still give an ndarray a = [[[1.5]]] res = np.squeeze(a) assert_equal(res, 1.5) assert_equal(res.ndim, 0) assert_equal(type(res), np.ndarray) class TestKron: def test_return_type(self): class myarray(np.ndarray): __array_priority__ = 1.0 a = np.ones([2, 2]) ma = myarray(a.shape, a.dtype, a.data) assert_equal(type(kron(a, a)), np.ndarray) assert_equal(type(kron(ma, ma)), myarray) assert_equal(type(kron(a, ma)), myarray) assert_equal(type(kron(ma, a)), myarray) @pytest.mark.parametrize( "array_class", [np.asarray, np.mat] ) def test_kron_smoke(self, array_class): a = array_class(np.ones([3, 3])) b = array_class(np.ones([3, 3])) k = array_class(np.ones([9, 9])) assert_array_equal(np.kron(a, b), k) def test_kron_ma(self): x = np.ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]]) k = np.ma.array(np.diag([1, 4, 4, 16]), mask=~np.array(np.identity(4), dtype=bool)) assert_array_equal(k, np.kron(x, x)) @pytest.mark.parametrize( "shape_a,shape_b", [ ((1, 1), (1, 1)), ((1, 2, 3), (4, 5, 6)), ((2, 2), (2, 2, 2)), ((1, 0), (1, 1)), ((2, 0, 2), (2, 2)), ((2, 0, 0, 2), (2, 0, 2)), ]) def test_kron_shape(self, shape_a, shape_b): a = np.ones(shape_a) b = np.ones(shape_b) normalised_shape_a = (1,) * max(0, len(shape_b)-len(shape_a)) + shape_a normalised_shape_b = (1,) * max(0, len(shape_a)-len(shape_b)) + shape_b expected_shape = np.multiply(normalised_shape_a, normalised_shape_b) k = np.kron(a, b) assert np.array_equal( k.shape, expected_shape), "Unexpected shape from kron" class TestTile: def test_basic(self): a = np.array([0, 1, 2]) b = [[1, 2], [3, 4]] assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2]) assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]]) assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]]) assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]]) assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) def test_tile_one_repetition_on_array_gh4679(self): a = np.arange(5) b = tile(a, 1) b += 2 assert_equal(a, np.arange(5)) def test_empty(self): a = np.array([[[]]]) b = np.array([[], []]) c = tile(b, 2).shape d = tile(a, (3, 2, 5)).shape assert_equal(c, (2, 0)) assert_equal(d, (3, 2, 0)) def test_kroncompare(self): from numpy.random import randint reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)] shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)] for s in shape: b = randint(0, 10, size=s) for r in reps: a = np.ones(r, b.dtype) large = tile(b, r) klarge = kron(a, b) assert_equal(large, klarge) class TestMayShareMemory: def test_basic(self): d = np.ones((50, 60)) d2 = np.ones((30, 60, 6)) assert_(np.may_share_memory(d, d)) assert_(np.may_share_memory(d, d[::-1])) assert_(np.may_share_memory(d, d[::2])) assert_(np.may_share_memory(d, d[1:, ::-1])) assert_(not np.may_share_memory(d[::-1], d2)) assert_(not np.may_share_memory(d[::2], d2)) assert_(not np.may_share_memory(d[1:, ::-1], d2)) assert_(np.may_share_memory(d2[1:, ::-1], d2)) # Utility def compare_results(res, desired): """Compare lists of arrays.""" if len(res) != len(desired): raise ValueError("Iterables have different lengths") # See also PEP 618 for Python 3.10 for x, y in zip(res, desired): assert_array_equal(x, y)