161 lines
6.1 KiB
Python
161 lines
6.1 KiB
Python
|
######################## BEGIN LICENSE BLOCK ########################
|
||
|
# The Original Code is Mozilla Universal charset detector code.
|
||
|
#
|
||
|
# The Initial Developer of the Original Code is
|
||
|
# Netscape Communications Corporation.
|
||
|
# Portions created by the Initial Developer are Copyright (C) 2001
|
||
|
# the Initial Developer. All Rights Reserved.
|
||
|
#
|
||
|
# Contributor(s):
|
||
|
# Mark Pilgrim - port to Python
|
||
|
# Shy Shalom - original C code
|
||
|
#
|
||
|
# This library is free software; you can redistribute it and/or
|
||
|
# modify it under the terms of the GNU Lesser General Public
|
||
|
# License as published by the Free Software Foundation; either
|
||
|
# version 2.1 of the License, or (at your option) any later version.
|
||
|
#
|
||
|
# This library is distributed in the hope that it will be useful,
|
||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
# Lesser General Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU Lesser General Public
|
||
|
# License along with this library; if not, write to the Free Software
|
||
|
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
||
|
# 02110-1301 USA
|
||
|
######################### END LICENSE BLOCK #########################
|
||
|
|
||
|
from collections import namedtuple
|
||
|
|
||
|
from .charsetprober import CharSetProber
|
||
|
from .enums import CharacterCategory, ProbingState, SequenceLikelihood
|
||
|
|
||
|
SingleByteCharSetModel = namedtuple(
|
||
|
"SingleByteCharSetModel",
|
||
|
[
|
||
|
"charset_name",
|
||
|
"language",
|
||
|
"char_to_order_map",
|
||
|
"language_model",
|
||
|
"typical_positive_ratio",
|
||
|
"keep_ascii_letters",
|
||
|
"alphabet",
|
||
|
],
|
||
|
)
|
||
|
|
||
|
|
||
|
class SingleByteCharSetProber(CharSetProber):
|
||
|
SAMPLE_SIZE = 64
|
||
|
SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
|
||
|
POSITIVE_SHORTCUT_THRESHOLD = 0.95
|
||
|
NEGATIVE_SHORTCUT_THRESHOLD = 0.05
|
||
|
|
||
|
def __init__(self, model, is_reversed=False, name_prober=None):
|
||
|
super().__init__()
|
||
|
self._model = model
|
||
|
# TRUE if we need to reverse every pair in the model lookup
|
||
|
self._reversed = is_reversed
|
||
|
# Optional auxiliary prober for name decision
|
||
|
self._name_prober = name_prober
|
||
|
self._last_order = None
|
||
|
self._seq_counters = None
|
||
|
self._total_seqs = None
|
||
|
self._total_char = None
|
||
|
self._control_char = None
|
||
|
self._freq_char = None
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self):
|
||
|
super().reset()
|
||
|
# char order of last character
|
||
|
self._last_order = 255
|
||
|
self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
|
||
|
self._total_seqs = 0
|
||
|
self._total_char = 0
|
||
|
self._control_char = 0
|
||
|
# characters that fall in our sampling range
|
||
|
self._freq_char = 0
|
||
|
|
||
|
@property
|
||
|
def charset_name(self):
|
||
|
if self._name_prober:
|
||
|
return self._name_prober.charset_name
|
||
|
return self._model.charset_name
|
||
|
|
||
|
@property
|
||
|
def language(self):
|
||
|
if self._name_prober:
|
||
|
return self._name_prober.language
|
||
|
return self._model.language
|
||
|
|
||
|
def feed(self, byte_str):
|
||
|
# TODO: Make filter_international_words keep things in self.alphabet
|
||
|
if not self._model.keep_ascii_letters:
|
||
|
byte_str = self.filter_international_words(byte_str)
|
||
|
else:
|
||
|
byte_str = self.remove_xml_tags(byte_str)
|
||
|
if not byte_str:
|
||
|
return self.state
|
||
|
char_to_order_map = self._model.char_to_order_map
|
||
|
language_model = self._model.language_model
|
||
|
for char in byte_str:
|
||
|
order = char_to_order_map.get(char, CharacterCategory.UNDEFINED)
|
||
|
# XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
|
||
|
# CharacterCategory.SYMBOL is actually 253, so we use CONTROL
|
||
|
# to make it closer to the original intent. The only difference
|
||
|
# is whether or not we count digits and control characters for
|
||
|
# _total_char purposes.
|
||
|
if order < CharacterCategory.CONTROL:
|
||
|
self._total_char += 1
|
||
|
if order < self.SAMPLE_SIZE:
|
||
|
self._freq_char += 1
|
||
|
if self._last_order < self.SAMPLE_SIZE:
|
||
|
self._total_seqs += 1
|
||
|
if not self._reversed:
|
||
|
lm_cat = language_model[self._last_order][order]
|
||
|
else:
|
||
|
lm_cat = language_model[order][self._last_order]
|
||
|
self._seq_counters[lm_cat] += 1
|
||
|
self._last_order = order
|
||
|
|
||
|
charset_name = self._model.charset_name
|
||
|
if self.state == ProbingState.DETECTING:
|
||
|
if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
|
||
|
confidence = self.get_confidence()
|
||
|
if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
|
||
|
self.logger.debug(
|
||
|
"%s confidence = %s, we have a winner", charset_name, confidence
|
||
|
)
|
||
|
self._state = ProbingState.FOUND_IT
|
||
|
elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
|
||
|
self.logger.debug(
|
||
|
"%s confidence = %s, below negative shortcut threshold %s",
|
||
|
charset_name,
|
||
|
confidence,
|
||
|
self.NEGATIVE_SHORTCUT_THRESHOLD,
|
||
|
)
|
||
|
self._state = ProbingState.NOT_ME
|
||
|
|
||
|
return self.state
|
||
|
|
||
|
def get_confidence(self):
|
||
|
r = 0.01
|
||
|
if self._total_seqs > 0:
|
||
|
r = (
|
||
|
(
|
||
|
self._seq_counters[SequenceLikelihood.POSITIVE]
|
||
|
+ 0.25 * self._seq_counters[SequenceLikelihood.LIKELY]
|
||
|
)
|
||
|
/ self._total_seqs
|
||
|
/ self._model.typical_positive_ratio
|
||
|
)
|
||
|
# The more control characters (proportionnaly to the size
|
||
|
# of the text), the less confident we become in the current
|
||
|
# charset.
|
||
|
r = r * (self._total_char - self._control_char) / self._total_char
|
||
|
r = r * self._freq_char / self._total_char
|
||
|
if r >= 1.0:
|
||
|
r = 0.99
|
||
|
return r
|