176 lines
5.1 KiB
Python
176 lines
5.1 KiB
Python
|
from functools import partial
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
concat,
|
||
|
isna,
|
||
|
notna,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
import pandas.tseries.offsets as offsets
|
||
|
|
||
|
|
||
|
def scoreatpercentile(a, per):
|
||
|
values = np.sort(a, axis=0)
|
||
|
|
||
|
idx = int(per / 1.0 * (values.shape[0] - 1))
|
||
|
|
||
|
if idx == values.shape[0] - 1:
|
||
|
retval = values[-1]
|
||
|
|
||
|
else:
|
||
|
qlow = idx / (values.shape[0] - 1)
|
||
|
qhig = (idx + 1) / (values.shape[0] - 1)
|
||
|
vlow = values[idx]
|
||
|
vhig = values[idx + 1]
|
||
|
retval = vlow + (vhig - vlow) * (per - qlow) / (qhig - qlow)
|
||
|
|
||
|
return retval
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_series(series, q, step):
|
||
|
compare_func = partial(scoreatpercentile, per=q)
|
||
|
result = series.rolling(50, step=step).quantile(q)
|
||
|
assert isinstance(result, Series)
|
||
|
end = range(0, len(series), step or 1)[-1] + 1
|
||
|
tm.assert_almost_equal(result.iloc[-1], compare_func(series[end - 50 : end]))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_frame(raw, frame, q, step):
|
||
|
compare_func = partial(scoreatpercentile, per=q)
|
||
|
result = frame.rolling(50, step=step).quantile(q)
|
||
|
assert isinstance(result, DataFrame)
|
||
|
end = range(0, len(frame), step or 1)[-1] + 1
|
||
|
tm.assert_series_equal(
|
||
|
result.iloc[-1, :],
|
||
|
frame.iloc[end - 50 : end, :].apply(compare_func, axis=0, raw=raw),
|
||
|
check_names=False,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_time_rule_series(series, q):
|
||
|
compare_func = partial(scoreatpercentile, per=q)
|
||
|
win = 25
|
||
|
ser = series[::2].resample("B").mean()
|
||
|
series_result = ser.rolling(window=win, min_periods=10).quantile(q)
|
||
|
last_date = series_result.index[-1]
|
||
|
prev_date = last_date - 24 * offsets.BDay()
|
||
|
|
||
|
trunc_series = series[::2].truncate(prev_date, last_date)
|
||
|
tm.assert_almost_equal(series_result[-1], compare_func(trunc_series))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_time_rule_frame(raw, frame, q):
|
||
|
compare_func = partial(scoreatpercentile, per=q)
|
||
|
win = 25
|
||
|
frm = frame[::2].resample("B").mean()
|
||
|
frame_result = frm.rolling(window=win, min_periods=10).quantile(q)
|
||
|
last_date = frame_result.index[-1]
|
||
|
prev_date = last_date - 24 * offsets.BDay()
|
||
|
|
||
|
trunc_frame = frame[::2].truncate(prev_date, last_date)
|
||
|
tm.assert_series_equal(
|
||
|
frame_result.xs(last_date),
|
||
|
trunc_frame.apply(compare_func, raw=raw),
|
||
|
check_names=False,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_nans(q):
|
||
|
compare_func = partial(scoreatpercentile, per=q)
|
||
|
obj = Series(np.random.randn(50))
|
||
|
obj[:10] = np.NaN
|
||
|
obj[-10:] = np.NaN
|
||
|
|
||
|
result = obj.rolling(50, min_periods=30).quantile(q)
|
||
|
tm.assert_almost_equal(result.iloc[-1], compare_func(obj[10:-10]))
|
||
|
|
||
|
# min_periods is working correctly
|
||
|
result = obj.rolling(20, min_periods=15).quantile(q)
|
||
|
assert isna(result.iloc[23])
|
||
|
assert not isna(result.iloc[24])
|
||
|
|
||
|
assert not isna(result.iloc[-6])
|
||
|
assert isna(result.iloc[-5])
|
||
|
|
||
|
obj2 = Series(np.random.randn(20))
|
||
|
result = obj2.rolling(10, min_periods=5).quantile(q)
|
||
|
assert isna(result.iloc[3])
|
||
|
assert notna(result.iloc[4])
|
||
|
|
||
|
result0 = obj.rolling(20, min_periods=0).quantile(q)
|
||
|
result1 = obj.rolling(20, min_periods=1).quantile(q)
|
||
|
tm.assert_almost_equal(result0, result1)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("minp", [0, 99, 100])
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_min_periods(series, minp, q, step):
|
||
|
result = series.rolling(len(series) + 1, min_periods=minp, step=step).quantile(q)
|
||
|
expected = series.rolling(len(series), min_periods=minp, step=step).quantile(q)
|
||
|
nan_mask = isna(result)
|
||
|
tm.assert_series_equal(nan_mask, isna(expected))
|
||
|
|
||
|
nan_mask = ~nan_mask
|
||
|
tm.assert_almost_equal(result[nan_mask], expected[nan_mask])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_center(q):
|
||
|
obj = Series(np.random.randn(50))
|
||
|
obj[:10] = np.NaN
|
||
|
obj[-10:] = np.NaN
|
||
|
|
||
|
result = obj.rolling(20, center=True).quantile(q)
|
||
|
expected = (
|
||
|
concat([obj, Series([np.NaN] * 9)])
|
||
|
.rolling(20)
|
||
|
.quantile(q)
|
||
|
.iloc[9:]
|
||
|
.reset_index(drop=True)
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_center_reindex_series(series, q):
|
||
|
# shifter index
|
||
|
s = [f"x{x:d}" for x in range(12)]
|
||
|
|
||
|
series_xp = (
|
||
|
series.reindex(list(series.index) + s)
|
||
|
.rolling(window=25)
|
||
|
.quantile(q)
|
||
|
.shift(-12)
|
||
|
.reindex(series.index)
|
||
|
)
|
||
|
|
||
|
series_rs = series.rolling(window=25, center=True).quantile(q)
|
||
|
tm.assert_series_equal(series_xp, series_rs)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0])
|
||
|
def test_center_reindex_frame(frame, q):
|
||
|
# shifter index
|
||
|
s = [f"x{x:d}" for x in range(12)]
|
||
|
|
||
|
frame_xp = (
|
||
|
frame.reindex(list(frame.index) + s)
|
||
|
.rolling(window=25)
|
||
|
.quantile(q)
|
||
|
.shift(-12)
|
||
|
.reindex(frame.index)
|
||
|
)
|
||
|
frame_rs = frame.rolling(window=25, center=True).quantile(q)
|
||
|
tm.assert_frame_equal(frame_xp, frame_rs)
|