aoc-2022/venv/Lib/site-packages/pandas/tests/tools/test_to_numeric.py

802 lines
23 KiB
Python
Raw Normal View History

import decimal
import numpy as np
from numpy import iinfo
import pytest
from pandas.compat import is_platform_arm
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
to_numeric,
)
import pandas._testing as tm
@pytest.fixture(params=[None, "ignore", "raise", "coerce"])
def errors(request):
return request.param
@pytest.fixture(params=[True, False])
def signed(request):
return request.param
@pytest.fixture(params=[lambda x: x, str], ids=["identity", "str"])
def transform(request):
return request.param
@pytest.fixture(params=[47393996303418497800, 100000000000000000000])
def large_val(request):
return request.param
@pytest.fixture(params=[True, False])
def multiple_elts(request):
return request.param
@pytest.fixture(
params=[
(lambda x: Index(x, name="idx"), tm.assert_index_equal),
(lambda x: Series(x, name="ser"), tm.assert_series_equal),
(lambda x: np.array(Index(x).values), tm.assert_numpy_array_equal),
]
)
def transform_assert_equal(request):
return request.param
@pytest.mark.parametrize(
"input_kwargs,result_kwargs",
[
({}, {"dtype": np.int64}),
({"errors": "coerce", "downcast": "integer"}, {"dtype": np.int8}),
],
)
def test_empty(input_kwargs, result_kwargs):
# see gh-16302
ser = Series([], dtype=object)
result = to_numeric(ser, **input_kwargs)
expected = Series([], **result_kwargs)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("last_val", ["7", 7])
def test_series(last_val):
ser = Series(["1", "-3.14", last_val])
result = to_numeric(ser)
expected = Series([1, -3.14, 7])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data",
[
[1, 3, 4, 5],
[1.0, 3.0, 4.0, 5.0],
# Bool is regarded as numeric.
[True, False, True, True],
],
)
def test_series_numeric(data):
ser = Series(data, index=list("ABCD"), name="EFG")
result = to_numeric(ser)
tm.assert_series_equal(result, ser)
@pytest.mark.parametrize(
"data,msg",
[
([1, -3.14, "apple"], 'Unable to parse string "apple" at position 2'),
(
["orange", 1, -3.14, "apple"],
'Unable to parse string "orange" at position 0',
),
],
)
def test_error(data, msg):
ser = Series(data)
with pytest.raises(ValueError, match=msg):
to_numeric(ser, errors="raise")
@pytest.mark.parametrize(
"errors,exp_data", [("ignore", [1, -3.14, "apple"]), ("coerce", [1, -3.14, np.nan])]
)
def test_ignore_error(errors, exp_data):
ser = Series([1, -3.14, "apple"])
result = to_numeric(ser, errors=errors)
expected = Series(exp_data)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"errors,exp",
[
("raise", 'Unable to parse string "apple" at position 2'),
("ignore", [True, False, "apple"]),
# Coerces to float.
("coerce", [1.0, 0.0, np.nan]),
],
)
def test_bool_handling(errors, exp):
ser = Series([True, False, "apple"])
if isinstance(exp, str):
with pytest.raises(ValueError, match=exp):
to_numeric(ser, errors=errors)
else:
result = to_numeric(ser, errors=errors)
expected = Series(exp)
tm.assert_series_equal(result, expected)
def test_list():
ser = ["1", "-3.14", "7"]
res = to_numeric(ser)
expected = np.array([1, -3.14, 7])
tm.assert_numpy_array_equal(res, expected)
@pytest.mark.parametrize(
"data,arr_kwargs",
[
([1, 3, 4, 5], {"dtype": np.int64}),
([1.0, 3.0, 4.0, 5.0], {}),
# Boolean is regarded as numeric.
([True, False, True, True], {}),
],
)
def test_list_numeric(data, arr_kwargs):
result = to_numeric(data)
expected = np.array(data, **arr_kwargs)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("kwargs", [{"dtype": "O"}, {}])
def test_numeric(kwargs):
data = [1, -3.14, 7]
ser = Series(data, **kwargs)
result = to_numeric(ser)
expected = Series(data)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"columns",
[
# One column.
"a",
# Multiple columns.
["a", "b"],
],
)
def test_numeric_df_columns(columns):
# see gh-14827
df = DataFrame(
{
"a": [1.2, decimal.Decimal(3.14), decimal.Decimal("infinity"), "0.1"],
"b": [1.0, 2.0, 3.0, 4.0],
}
)
expected = DataFrame({"a": [1.2, 3.14, np.inf, 0.1], "b": [1.0, 2.0, 3.0, 4.0]})
df_copy = df.copy()
df_copy[columns] = df_copy[columns].apply(to_numeric)
tm.assert_frame_equal(df_copy, expected)
@pytest.mark.parametrize(
"data,exp_data",
[
(
[[decimal.Decimal(3.14), 1.0], decimal.Decimal(1.6), 0.1],
[[3.14, 1.0], 1.6, 0.1],
),
([np.array([decimal.Decimal(3.14), 1.0]), 0.1], [[3.14, 1.0], 0.1]),
],
)
def test_numeric_embedded_arr_likes(data, exp_data):
# Test to_numeric with embedded lists and arrays
df = DataFrame({"a": data})
df["a"] = df["a"].apply(to_numeric)
expected = DataFrame({"a": exp_data})
tm.assert_frame_equal(df, expected)
def test_all_nan():
ser = Series(["a", "b", "c"])
result = to_numeric(ser, errors="coerce")
expected = Series([np.nan, np.nan, np.nan])
tm.assert_series_equal(result, expected)
def test_type_check(errors):
# see gh-11776
df = DataFrame({"a": [1, -3.14, 7], "b": ["4", "5", "6"]})
kwargs = {"errors": errors} if errors is not None else {}
with pytest.raises(TypeError, match="1-d array"):
to_numeric(df, **kwargs)
@pytest.mark.parametrize("val", [1, 1.1, 20001])
def test_scalar(val, signed, transform):
val = -val if signed else val
assert to_numeric(transform(val)) == float(val)
def test_really_large_scalar(large_val, signed, transform, errors):
# see gh-24910
kwargs = {"errors": errors} if errors is not None else {}
val = -large_val if signed else large_val
val = transform(val)
val_is_string = isinstance(val, str)
if val_is_string and errors in (None, "raise"):
msg = "Integer out of range. at position 0"
with pytest.raises(ValueError, match=msg):
to_numeric(val, **kwargs)
else:
expected = float(val) if (errors == "coerce" and val_is_string) else val
tm.assert_almost_equal(to_numeric(val, **kwargs), expected)
def test_really_large_in_arr(large_val, signed, transform, multiple_elts, errors):
# see gh-24910
kwargs = {"errors": errors} if errors is not None else {}
val = -large_val if signed else large_val
val = transform(val)
extra_elt = "string"
arr = [val] + multiple_elts * [extra_elt]
val_is_string = isinstance(val, str)
coercing = errors == "coerce"
if errors in (None, "raise") and (val_is_string or multiple_elts):
if val_is_string:
msg = "Integer out of range. at position 0"
else:
msg = 'Unable to parse string "string" at position 1'
with pytest.raises(ValueError, match=msg):
to_numeric(arr, **kwargs)
else:
result = to_numeric(arr, **kwargs)
exp_val = float(val) if (coercing and val_is_string) else val
expected = [exp_val]
if multiple_elts:
if coercing:
expected.append(np.nan)
exp_dtype = float
else:
expected.append(extra_elt)
exp_dtype = object
else:
exp_dtype = float if isinstance(exp_val, (int, float)) else object
tm.assert_almost_equal(result, np.array(expected, dtype=exp_dtype))
def test_really_large_in_arr_consistent(large_val, signed, multiple_elts, errors):
# see gh-24910
#
# Even if we discover that we have to hold float, does not mean
# we should be lenient on subsequent elements that fail to be integer.
kwargs = {"errors": errors} if errors is not None else {}
arr = [str(-large_val if signed else large_val)]
if multiple_elts:
arr.insert(0, large_val)
if errors in (None, "raise"):
index = int(multiple_elts)
msg = f"Integer out of range. at position {index}"
with pytest.raises(ValueError, match=msg):
to_numeric(arr, **kwargs)
else:
result = to_numeric(arr, **kwargs)
if errors == "coerce":
expected = [float(i) for i in arr]
exp_dtype = float
else:
expected = arr
exp_dtype = object
tm.assert_almost_equal(result, np.array(expected, dtype=exp_dtype))
@pytest.mark.parametrize(
"errors,checker",
[
("raise", 'Unable to parse string "fail" at position 0'),
("ignore", lambda x: x == "fail"),
("coerce", lambda x: np.isnan(x)),
],
)
def test_scalar_fail(errors, checker):
scalar = "fail"
if isinstance(checker, str):
with pytest.raises(ValueError, match=checker):
to_numeric(scalar, errors=errors)
else:
assert checker(to_numeric(scalar, errors=errors))
@pytest.mark.parametrize("data", [[1, 2, 3], [1.0, np.nan, 3, np.nan]])
def test_numeric_dtypes(data, transform_assert_equal):
transform, assert_equal = transform_assert_equal
data = transform(data)
result = to_numeric(data)
assert_equal(result, data)
@pytest.mark.parametrize(
"data,exp",
[
(["1", "2", "3"], np.array([1, 2, 3], dtype="int64")),
(["1.5", "2.7", "3.4"], np.array([1.5, 2.7, 3.4])),
],
)
def test_str(data, exp, transform_assert_equal):
transform, assert_equal = transform_assert_equal
result = to_numeric(transform(data))
expected = transform(exp)
assert_equal(result, expected)
def test_datetime_like(tz_naive_fixture, transform_assert_equal):
transform, assert_equal = transform_assert_equal
idx = pd.date_range("20130101", periods=3, tz=tz_naive_fixture)
result = to_numeric(transform(idx))
expected = transform(idx.asi8)
assert_equal(result, expected)
def test_timedelta(transform_assert_equal):
transform, assert_equal = transform_assert_equal
idx = pd.timedelta_range("1 days", periods=3, freq="D")
result = to_numeric(transform(idx))
expected = transform(idx.asi8)
assert_equal(result, expected)
def test_period(request, transform_assert_equal):
transform, assert_equal = transform_assert_equal
idx = pd.period_range("2011-01", periods=3, freq="M", name="")
inp = transform(idx)
if not isinstance(inp, Index):
request.node.add_marker(
pytest.mark.xfail(reason="Missing PeriodDtype support in to_numeric")
)
result = to_numeric(inp)
expected = transform(idx.asi8)
assert_equal(result, expected)
@pytest.mark.parametrize(
"errors,expected",
[
("raise", "Invalid object type at position 0"),
("ignore", Series([[10.0, 2], 1.0, "apple"])),
("coerce", Series([np.nan, 1.0, np.nan])),
],
)
def test_non_hashable(errors, expected):
# see gh-13324
ser = Series([[10.0, 2], 1.0, "apple"])
if isinstance(expected, str):
with pytest.raises(TypeError, match=expected):
to_numeric(ser, errors=errors)
else:
result = to_numeric(ser, errors=errors)
tm.assert_series_equal(result, expected)
def test_downcast_invalid_cast():
# see gh-13352
data = ["1", 2, 3]
invalid_downcast = "unsigned-integer"
msg = "invalid downcasting method provided"
with pytest.raises(ValueError, match=msg):
to_numeric(data, downcast=invalid_downcast)
def test_errors_invalid_value():
# see gh-26466
data = ["1", 2, 3]
invalid_error_value = "invalid"
msg = "invalid error value specified"
with pytest.raises(ValueError, match=msg):
to_numeric(data, errors=invalid_error_value)
@pytest.mark.parametrize(
"data",
[
["1", 2, 3],
[1, 2, 3],
np.array(["1970-01-02", "1970-01-03", "1970-01-04"], dtype="datetime64[D]"),
],
)
@pytest.mark.parametrize(
"kwargs,exp_dtype",
[
# Basic function tests.
({}, np.int64),
({"downcast": None}, np.int64),
# Support below np.float32 is rare and far between.
({"downcast": "float"}, np.dtype(np.float32).char),
# Basic dtype support.
({"downcast": "unsigned"}, np.dtype(np.typecodes["UnsignedInteger"][0])),
],
)
def test_downcast_basic(data, kwargs, exp_dtype):
# see gh-13352
result = to_numeric(data, **kwargs)
expected = np.array([1, 2, 3], dtype=exp_dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("signed_downcast", ["integer", "signed"])
@pytest.mark.parametrize(
"data",
[
["1", 2, 3],
[1, 2, 3],
np.array(["1970-01-02", "1970-01-03", "1970-01-04"], dtype="datetime64[D]"),
],
)
def test_signed_downcast(data, signed_downcast):
# see gh-13352
smallest_int_dtype = np.dtype(np.typecodes["Integer"][0])
expected = np.array([1, 2, 3], dtype=smallest_int_dtype)
res = to_numeric(data, downcast=signed_downcast)
tm.assert_numpy_array_equal(res, expected)
def test_ignore_downcast_invalid_data():
# If we can't successfully cast the given
# data to a numeric dtype, do not bother
# with the downcast parameter.
data = ["foo", 2, 3]
expected = np.array(data, dtype=object)
res = to_numeric(data, errors="ignore", downcast="unsigned")
tm.assert_numpy_array_equal(res, expected)
def test_ignore_downcast_neg_to_unsigned():
# Cannot cast to an unsigned integer
# because we have a negative number.
data = ["-1", 2, 3]
expected = np.array([-1, 2, 3], dtype=np.int64)
res = to_numeric(data, downcast="unsigned")
tm.assert_numpy_array_equal(res, expected)
@pytest.mark.parametrize("downcast", ["integer", "signed", "unsigned"])
@pytest.mark.parametrize(
"data,expected",
[
(["1.1", 2, 3], np.array([1.1, 2, 3], dtype=np.float64)),
(
[10000.0, 20000, 3000, 40000.36, 50000, 50000.00],
np.array(
[10000.0, 20000, 3000, 40000.36, 50000, 50000.00], dtype=np.float64
),
),
],
)
def test_ignore_downcast_cannot_convert_float(data, expected, downcast):
# Cannot cast to an integer (signed or unsigned)
# because we have a float number.
res = to_numeric(data, downcast=downcast)
tm.assert_numpy_array_equal(res, expected)
@pytest.mark.parametrize(
"downcast,expected_dtype",
[("integer", np.int16), ("signed", np.int16), ("unsigned", np.uint16)],
)
def test_downcast_not8bit(downcast, expected_dtype):
# the smallest integer dtype need not be np.(u)int8
data = ["256", 257, 258]
expected = np.array([256, 257, 258], dtype=expected_dtype)
res = to_numeric(data, downcast=downcast)
tm.assert_numpy_array_equal(res, expected)
@pytest.mark.parametrize(
"dtype,downcast,min_max",
[
("int8", "integer", [iinfo(np.int8).min, iinfo(np.int8).max]),
("int16", "integer", [iinfo(np.int16).min, iinfo(np.int16).max]),
("int32", "integer", [iinfo(np.int32).min, iinfo(np.int32).max]),
("int64", "integer", [iinfo(np.int64).min, iinfo(np.int64).max]),
("uint8", "unsigned", [iinfo(np.uint8).min, iinfo(np.uint8).max]),
("uint16", "unsigned", [iinfo(np.uint16).min, iinfo(np.uint16).max]),
("uint32", "unsigned", [iinfo(np.uint32).min, iinfo(np.uint32).max]),
("uint64", "unsigned", [iinfo(np.uint64).min, iinfo(np.uint64).max]),
("int16", "integer", [iinfo(np.int8).min, iinfo(np.int8).max + 1]),
("int32", "integer", [iinfo(np.int16).min, iinfo(np.int16).max + 1]),
("int64", "integer", [iinfo(np.int32).min, iinfo(np.int32).max + 1]),
("int16", "integer", [iinfo(np.int8).min - 1, iinfo(np.int16).max]),
("int32", "integer", [iinfo(np.int16).min - 1, iinfo(np.int32).max]),
("int64", "integer", [iinfo(np.int32).min - 1, iinfo(np.int64).max]),
("uint16", "unsigned", [iinfo(np.uint8).min, iinfo(np.uint8).max + 1]),
("uint32", "unsigned", [iinfo(np.uint16).min, iinfo(np.uint16).max + 1]),
("uint64", "unsigned", [iinfo(np.uint32).min, iinfo(np.uint32).max + 1]),
],
)
def test_downcast_limits(dtype, downcast, min_max):
# see gh-14404: test the limits of each downcast.
series = to_numeric(Series(min_max), downcast=downcast)
assert series.dtype == dtype
def test_downcast_float64_to_float32():
# GH-43693: Check float64 preservation when >= 16,777,217
series = Series([16777217.0, np.finfo(np.float64).max, np.nan], dtype=np.float64)
result = to_numeric(series, downcast="float")
assert series.dtype == result.dtype
@pytest.mark.parametrize(
"ser,expected",
[
(
Series([0, 9223372036854775808]),
Series([0, 9223372036854775808], dtype=np.uint64),
)
],
)
def test_downcast_uint64(ser, expected):
# see gh-14422:
# BUG: to_numeric doesn't work uint64 numbers
result = to_numeric(ser, downcast="unsigned")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data,exp_data",
[
(
[200, 300, "", "NaN", 30000000000000000000],
[200, 300, np.nan, np.nan, 30000000000000000000],
),
(
["12345678901234567890", "1234567890", "ITEM"],
[12345678901234567890, 1234567890, np.nan],
),
],
)
def test_coerce_uint64_conflict(data, exp_data):
# see gh-17007 and gh-17125
#
# Still returns float despite the uint64-nan conflict,
# which would normally force the casting to object.
result = to_numeric(Series(data), errors="coerce")
expected = Series(exp_data, dtype=float)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"errors,exp",
[
("ignore", Series(["12345678901234567890", "1234567890", "ITEM"])),
("raise", "Unable to parse string"),
],
)
def test_non_coerce_uint64_conflict(errors, exp):
# see gh-17007 and gh-17125
#
# For completeness.
ser = Series(["12345678901234567890", "1234567890", "ITEM"])
if isinstance(exp, str):
with pytest.raises(ValueError, match=exp):
to_numeric(ser, errors=errors)
else:
result = to_numeric(ser, errors=errors)
tm.assert_series_equal(result, ser)
@pytest.mark.parametrize("dc1", ["integer", "float", "unsigned"])
@pytest.mark.parametrize("dc2", ["integer", "float", "unsigned"])
def test_downcast_empty(dc1, dc2):
# GH32493
tm.assert_numpy_array_equal(
to_numeric([], downcast=dc1),
to_numeric([], downcast=dc2),
check_dtype=False,
)
def test_failure_to_convert_uint64_string_to_NaN():
# GH 32394
result = to_numeric("uint64", errors="coerce")
assert np.isnan(result)
ser = Series([32, 64, np.nan])
result = to_numeric(Series(["32", "64", "uint64"]), errors="coerce")
tm.assert_series_equal(result, ser)
@pytest.mark.parametrize(
"strrep",
[
"243.164",
"245.968",
"249.585",
"259.745",
"265.742",
"272.567",
"279.196",
"280.366",
"275.034",
"271.351",
"272.889",
"270.627",
"280.828",
"290.383",
"308.153",
"319.945",
"336.0",
"344.09",
"351.385",
"356.178",
"359.82",
"361.03",
"367.701",
"380.812",
"387.98",
"391.749",
"391.171",
"385.97",
"385.345",
"386.121",
"390.996",
"399.734",
"413.073",
"421.532",
"430.221",
"437.092",
"439.746",
"446.01",
"451.191",
"460.463",
"469.779",
"472.025",
"479.49",
"474.864",
"467.54",
"471.978",
],
)
def test_precision_float_conversion(strrep):
# GH 31364
result = to_numeric(strrep)
assert result == float(strrep)
@pytest.mark.parametrize(
"values, expected",
[
(["1", "2", None], Series([1, 2, np.nan])),
(["1", "2", "3"], Series([1, 2, 3])),
(["1", "2", 3], Series([1, 2, 3])),
(["1", "2", 3.5], Series([1, 2, 3.5])),
(["1", None, 3.5], Series([1, np.nan, 3.5])),
(["1", "2", "3.5"], Series([1, 2, 3.5])),
],
)
def test_to_numeric_from_nullable_string(values, nullable_string_dtype, expected):
# https://github.com/pandas-dev/pandas/issues/37262
s = Series(values, dtype=nullable_string_dtype)
result = to_numeric(s)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data, input_dtype, downcast, expected_dtype",
(
([1, 1], "Int64", "integer", "Int8"),
([1.0, pd.NA], "Float64", "integer", "Int8"),
([1.0, 1.1], "Float64", "integer", "Float64"),
([1, pd.NA], "Int64", "integer", "Int8"),
([450, 300], "Int64", "integer", "Int16"),
([1, 1], "Float64", "integer", "Int8"),
([np.iinfo(np.int64).max - 1, 1], "Int64", "integer", "Int64"),
([1, 1], "Int64", "signed", "Int8"),
([1.0, 1.0], "Float32", "signed", "Int8"),
([1.0, 1.1], "Float64", "signed", "Float64"),
([1, pd.NA], "Int64", "signed", "Int8"),
([450, -300], "Int64", "signed", "Int16"),
pytest.param(
[np.iinfo(np.uint64).max - 1, 1],
"UInt64",
"signed",
"UInt64",
marks=pytest.mark.xfail(not is_platform_arm(), reason="GH38798"),
),
([1, 1], "Int64", "unsigned", "UInt8"),
([1.0, 1.0], "Float32", "unsigned", "UInt8"),
([1.0, 1.1], "Float64", "unsigned", "Float64"),
([1, pd.NA], "Int64", "unsigned", "UInt8"),
([450, -300], "Int64", "unsigned", "Int64"),
([-1, -1], "Int32", "unsigned", "Int32"),
([1, 1], "Float64", "float", "Float32"),
([1, 1.1], "Float64", "float", "Float32"),
([1, 1], "Float32", "float", "Float32"),
([1, 1.1], "Float32", "float", "Float32"),
),
)
def test_downcast_nullable_numeric(data, input_dtype, downcast, expected_dtype):
arr = pd.array(data, dtype=input_dtype)
result = to_numeric(arr, downcast=downcast)
expected = pd.array(data, dtype=expected_dtype)
tm.assert_extension_array_equal(result, expected)
def test_downcast_nullable_mask_is_copied():
# GH38974
arr = pd.array([1, 2, pd.NA], dtype="Int64")
result = to_numeric(arr, downcast="integer")
expected = pd.array([1, 2, pd.NA], dtype="Int8")
tm.assert_extension_array_equal(result, expected)
arr[1] = pd.NA # should not modify result
tm.assert_extension_array_equal(result, expected)
def test_to_numeric_scientific_notation():
# GH 15898
result = to_numeric("1.7e+308")
expected = np.float64(1.7e308)
assert result == expected