119 lines
3.5 KiB
Python
119 lines
3.5 KiB
Python
|
from datetime import timedelta
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas._libs import iNaT
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
Categorical,
|
||
|
Index,
|
||
|
NaT,
|
||
|
Series,
|
||
|
isna,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestSeriesMissingData:
|
||
|
def test_categorical_nan_handling(self):
|
||
|
|
||
|
# NaNs are represented as -1 in labels
|
||
|
s = Series(Categorical(["a", "b", np.nan, "a"]))
|
||
|
tm.assert_index_equal(s.cat.categories, Index(["a", "b"]))
|
||
|
tm.assert_numpy_array_equal(
|
||
|
s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8)
|
||
|
)
|
||
|
|
||
|
def test_isna_for_inf(self):
|
||
|
s = Series(["a", np.inf, np.nan, pd.NA, 1.0])
|
||
|
with pd.option_context("mode.use_inf_as_na", True):
|
||
|
r = s.isna()
|
||
|
dr = s.dropna()
|
||
|
e = Series([False, True, True, True, False])
|
||
|
de = Series(["a", 1.0], index=[0, 4])
|
||
|
tm.assert_series_equal(r, e)
|
||
|
tm.assert_series_equal(dr, de)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"method, expected",
|
||
|
[
|
||
|
["isna", Series([False, True, True, False])],
|
||
|
["dropna", Series(["a", 1.0], index=[0, 3])],
|
||
|
],
|
||
|
)
|
||
|
def test_isnull_for_inf_deprecated(self, method, expected):
|
||
|
# gh-17115
|
||
|
s = Series(["a", np.inf, np.nan, 1.0])
|
||
|
with pd.option_context("mode.use_inf_as_null", True):
|
||
|
result = getattr(s, method)()
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_timedelta64_nan(self):
|
||
|
|
||
|
td = Series([timedelta(days=i) for i in range(10)])
|
||
|
|
||
|
# nan ops on timedeltas
|
||
|
td1 = td.copy()
|
||
|
td1[0] = np.nan
|
||
|
assert isna(td1[0])
|
||
|
assert td1[0].value == iNaT
|
||
|
td1[0] = td[0]
|
||
|
assert not isna(td1[0])
|
||
|
|
||
|
# GH#16674 iNaT is treated as an integer when given by the user
|
||
|
td1[1] = iNaT
|
||
|
assert not isna(td1[1])
|
||
|
assert td1.dtype == np.object_
|
||
|
assert td1[1] == iNaT
|
||
|
td1[1] = td[1]
|
||
|
assert not isna(td1[1])
|
||
|
|
||
|
td1[2] = NaT
|
||
|
assert isna(td1[2])
|
||
|
assert td1[2].value == iNaT
|
||
|
td1[2] = td[2]
|
||
|
assert not isna(td1[2])
|
||
|
|
||
|
# boolean setting
|
||
|
# GH#2899 boolean setting
|
||
|
td3 = np.timedelta64(timedelta(days=3))
|
||
|
td7 = np.timedelta64(timedelta(days=7))
|
||
|
td[(td > td3) & (td < td7)] = np.nan
|
||
|
assert isna(td).sum() == 3
|
||
|
|
||
|
@pytest.mark.xfail(
|
||
|
reason="Chained inequality raises when trying to define 'selector'"
|
||
|
)
|
||
|
def test_logical_range_select(self, datetime_series):
|
||
|
# NumPy limitation =(
|
||
|
# https://github.com/pandas-dev/pandas/commit/9030dc021f07c76809848925cb34828f6c8484f3
|
||
|
np.random.seed(12345)
|
||
|
selector = -0.5 <= datetime_series <= 0.5
|
||
|
expected = (datetime_series >= -0.5) & (datetime_series <= 0.5)
|
||
|
tm.assert_series_equal(selector, expected)
|
||
|
|
||
|
def test_valid(self, datetime_series):
|
||
|
ts = datetime_series.copy()
|
||
|
ts.index = ts.index._with_freq(None)
|
||
|
ts[::2] = np.NaN
|
||
|
|
||
|
result = ts.dropna()
|
||
|
assert len(result) == ts.count()
|
||
|
tm.assert_series_equal(result, ts[1::2])
|
||
|
tm.assert_series_equal(result, ts[pd.notna(ts)])
|
||
|
|
||
|
|
||
|
def test_hasnans_uncached_for_series():
|
||
|
# GH#19700
|
||
|
idx = Index([0, 1])
|
||
|
assert idx.hasnans is False
|
||
|
assert "hasnans" in idx._cache
|
||
|
ser = idx.to_series()
|
||
|
assert ser.hasnans is False
|
||
|
assert not hasattr(ser, "_cache")
|
||
|
ser.iloc[-1] = np.nan
|
||
|
assert ser.hasnans is True
|
||
|
assert Series.hasnans.__doc__ == Index.hasnans.__doc__
|