aoc-2022/venv/Lib/site-packages/pandas/tests/series/methods/test_reindex.py

426 lines
13 KiB
Python
Raw Normal View History

import numpy as np
import pytest
from pandas import (
NA,
Categorical,
Float64Dtype,
Index,
MultiIndex,
NaT,
Period,
PeriodIndex,
Series,
Timedelta,
Timestamp,
date_range,
isna,
)
import pandas._testing as tm
def test_reindex(datetime_series, string_series):
identity = string_series.reindex(string_series.index)
# __array_interface__ is not defined for older numpies
# and on some pythons
try:
assert np.may_share_memory(string_series.index, identity.index)
except AttributeError:
pass
assert identity.index.is_(string_series.index)
assert identity.index.identical(string_series.index)
subIndex = string_series.index[10:20]
subSeries = string_series.reindex(subIndex)
for idx, val in subSeries.items():
assert val == string_series[idx]
subIndex2 = datetime_series.index[10:20]
subTS = datetime_series.reindex(subIndex2)
for idx, val in subTS.items():
assert val == datetime_series[idx]
stuffSeries = datetime_series.reindex(subIndex)
assert np.isnan(stuffSeries).all()
# This is extremely important for the Cython code to not screw up
nonContigIndex = datetime_series.index[::2]
subNonContig = datetime_series.reindex(nonContigIndex)
for idx, val in subNonContig.items():
assert val == datetime_series[idx]
# return a copy the same index here
result = datetime_series.reindex()
assert not (result is datetime_series)
def test_reindex_nan():
ts = Series([2, 3, 5, 7], index=[1, 4, np.nan, 8])
i, j = [np.nan, 1, np.nan, 8, 4, np.nan], [2, 0, 2, 3, 1, 2]
tm.assert_series_equal(ts.reindex(i), ts.iloc[j])
ts.index = ts.index.astype("object")
# reindex coerces index.dtype to float, loc/iloc doesn't
tm.assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False)
def test_reindex_series_add_nat():
rng = date_range("1/1/2000 00:00:00", periods=10, freq="10s")
series = Series(rng)
result = series.reindex(range(15))
assert np.issubdtype(result.dtype, np.dtype("M8[ns]"))
mask = result.isna()
assert mask[-5:].all()
assert not mask[:-5].any()
def test_reindex_with_datetimes():
rng = date_range("1/1/2000", periods=20)
ts = Series(np.random.randn(20), index=rng)
result = ts.reindex(list(ts.index[5:10]))
expected = ts[5:10]
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
result = ts[list(ts.index[5:10])]
tm.assert_series_equal(result, expected)
def test_reindex_corner(datetime_series):
# (don't forget to fix this) I think it's fixed
empty = Series(dtype=object)
empty.reindex(datetime_series.index, method="pad") # it works
# corner case: pad empty series
reindexed = empty.reindex(datetime_series.index, method="pad")
# pass non-Index
reindexed = datetime_series.reindex(list(datetime_series.index))
datetime_series.index = datetime_series.index._with_freq(None)
tm.assert_series_equal(datetime_series, reindexed)
# bad fill method
ts = datetime_series[::2]
msg = (
r"Invalid fill method\. Expecting pad \(ffill\), backfill "
r"\(bfill\) or nearest\. Got foo"
)
with pytest.raises(ValueError, match=msg):
ts.reindex(datetime_series.index, method="foo")
def test_reindex_pad():
s = Series(np.arange(10), dtype="int64")
s2 = s[::2]
reindexed = s2.reindex(s.index, method="pad")
reindexed2 = s2.reindex(s.index, method="ffill")
tm.assert_series_equal(reindexed, reindexed2)
expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10))
tm.assert_series_equal(reindexed, expected)
# GH4604
s = Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"])
new_index = ["a", "g", "c", "f"]
expected = Series([1, 1, 3, 3], index=new_index)
# this changes dtype because the ffill happens after
result = s.reindex(new_index).ffill()
tm.assert_series_equal(result, expected.astype("float64"))
result = s.reindex(new_index).ffill(downcast="infer")
tm.assert_series_equal(result, expected)
expected = Series([1, 5, 3, 5], index=new_index)
result = s.reindex(new_index, method="ffill")
tm.assert_series_equal(result, expected)
# inference of new dtype
s = Series([True, False, False, True], index=list("abcd"))
new_index = "agc"
result = s.reindex(list(new_index)).ffill()
expected = Series([True, True, False], index=list(new_index))
tm.assert_series_equal(result, expected)
# GH4618 shifted series downcasting
s = Series(False, index=range(0, 5))
result = s.shift(1).fillna(method="bfill")
expected = Series(False, index=range(0, 5))
tm.assert_series_equal(result, expected)
def test_reindex_nearest():
s = Series(np.arange(10, dtype="int64"))
target = [0.1, 0.9, 1.5, 2.0]
result = s.reindex(target, method="nearest")
expected = Series(np.around(target).astype("int64"), target)
tm.assert_series_equal(expected, result)
result = s.reindex(target, method="nearest", tolerance=0.2)
expected = Series([0, 1, np.nan, 2], target)
tm.assert_series_equal(expected, result)
result = s.reindex(target, method="nearest", tolerance=[0.3, 0.01, 0.4, 3])
expected = Series([0, np.nan, np.nan, 2], target)
tm.assert_series_equal(expected, result)
def test_reindex_int(datetime_series):
ts = datetime_series[::2]
int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index)
# this should work fine
reindexed_int = int_ts.reindex(datetime_series.index)
# if NaNs introduced
assert reindexed_int.dtype == np.float_
# NO NaNs introduced
reindexed_int = int_ts.reindex(int_ts.index[::2])
assert reindexed_int.dtype == np.int_
def test_reindex_bool(datetime_series):
# A series other than float, int, string, or object
ts = datetime_series[::2]
bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
# this should work fine
reindexed_bool = bool_ts.reindex(datetime_series.index)
# if NaNs introduced
assert reindexed_bool.dtype == np.object_
# NO NaNs introduced
reindexed_bool = bool_ts.reindex(bool_ts.index[::2])
assert reindexed_bool.dtype == np.bool_
def test_reindex_bool_pad(datetime_series):
# fail
ts = datetime_series[5:]
bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
filled_bool = bool_ts.reindex(datetime_series.index, method="pad")
assert isna(filled_bool[:5]).all()
def test_reindex_categorical():
index = date_range("20000101", periods=3)
# reindexing to an invalid Categorical
s = Series(["a", "b", "c"], dtype="category")
result = s.reindex(index)
expected = Series(
Categorical(values=[np.nan, np.nan, np.nan], categories=["a", "b", "c"])
)
expected.index = index
tm.assert_series_equal(result, expected)
# partial reindexing
expected = Series(Categorical(values=["b", "c"], categories=["a", "b", "c"]))
expected.index = [1, 2]
result = s.reindex([1, 2])
tm.assert_series_equal(result, expected)
expected = Series(Categorical(values=["c", np.nan], categories=["a", "b", "c"]))
expected.index = [2, 3]
result = s.reindex([2, 3])
tm.assert_series_equal(result, expected)
def test_reindex_astype_order_consistency():
# GH#17444
ser = Series([1, 2, 3], index=[2, 0, 1])
new_index = [0, 1, 2]
temp_dtype = "category"
new_dtype = str
result = ser.reindex(new_index).astype(temp_dtype).astype(new_dtype)
expected = ser.astype(temp_dtype).reindex(new_index).astype(new_dtype)
tm.assert_series_equal(result, expected)
def test_reindex_fill_value():
# -----------------------------------------------------------
# floats
floats = Series([1.0, 2.0, 3.0])
result = floats.reindex([1, 2, 3])
expected = Series([2.0, 3.0, np.nan], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
result = floats.reindex([1, 2, 3], fill_value=0)
expected = Series([2.0, 3.0, 0], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
# -----------------------------------------------------------
# ints
ints = Series([1, 2, 3])
result = ints.reindex([1, 2, 3])
expected = Series([2.0, 3.0, np.nan], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
# don't upcast
result = ints.reindex([1, 2, 3], fill_value=0)
expected = Series([2, 3, 0], index=[1, 2, 3])
assert issubclass(result.dtype.type, np.integer)
tm.assert_series_equal(result, expected)
# -----------------------------------------------------------
# objects
objects = Series([1, 2, 3], dtype=object)
result = objects.reindex([1, 2, 3])
expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object)
tm.assert_series_equal(result, expected)
result = objects.reindex([1, 2, 3], fill_value="foo")
expected = Series([2, 3, "foo"], index=[1, 2, 3], dtype=object)
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------
# bools
bools = Series([True, False, True])
result = bools.reindex([1, 2, 3])
expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object)
tm.assert_series_equal(result, expected)
result = bools.reindex([1, 2, 3], fill_value=False)
expected = Series([False, True, False], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
@pytest.mark.parametrize("fill_value", ["string", 0, Timedelta(0)])
def test_reindex_fill_value_datetimelike_upcast(dtype, fill_value, using_array_manager):
# https://github.com/pandas-dev/pandas/issues/42921
if using_array_manager:
pytest.skip("Array manager does not promote dtype, hence we fail")
if dtype == "timedelta64[ns]" and fill_value == Timedelta(0):
# use the scalar that is not compatible with the dtype for this test
fill_value = Timestamp(0)
ser = Series([NaT], dtype=dtype)
result = ser.reindex([0, 1], fill_value=fill_value)
expected = Series([None, fill_value], index=[0, 1], dtype=object)
tm.assert_series_equal(result, expected)
def test_reindex_datetimeindexes_tz_naive_and_aware():
# GH 8306
idx = date_range("20131101", tz="America/Chicago", periods=7)
newidx = date_range("20131103", periods=10, freq="H")
s = Series(range(7), index=idx)
msg = (
r"Cannot compare dtypes datetime64\[ns, America/Chicago\] "
r"and datetime64\[ns\]"
)
with pytest.raises(TypeError, match=msg):
s.reindex(newidx, method="ffill")
def test_reindex_empty_series_tz_dtype():
# GH 20869
result = Series(dtype="datetime64[ns, UTC]").reindex([0, 1])
expected = Series([NaT] * 2, dtype="datetime64[ns, UTC]")
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"p_values, o_values, values, expected_values",
[
(
[Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")],
[Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC"), "All"],
[1.0, 1.0],
[1.0, 1.0, np.nan],
),
(
[Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")],
[Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")],
[1.0, 1.0],
[1.0, 1.0],
),
],
)
def test_reindex_periodindex_with_object(p_values, o_values, values, expected_values):
# GH#28337
period_index = PeriodIndex(p_values)
object_index = Index(o_values)
ser = Series(values, index=period_index)
result = ser.reindex(object_index)
expected = Series(expected_values, index=object_index)
tm.assert_series_equal(result, expected)
def test_reindex_too_many_args():
# GH 40980
ser = Series([1, 2])
with pytest.raises(
TypeError, match=r"Only one positional argument \('index'\) is allowed"
):
ser.reindex([2, 3], False)
def test_reindex_double_index():
# GH 40980
ser = Series([1, 2])
msg = r"'index' passed as both positional and keyword argument"
with pytest.raises(TypeError, match=msg):
ser.reindex([2, 3], index=[3, 4])
def test_reindex_no_posargs():
# GH 40980
ser = Series([1, 2])
result = ser.reindex(index=[1, 0])
expected = Series([2, 1], index=[1, 0])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("values", [[["a"], ["x"]], [[], []]])
def test_reindex_empty_with_level(values):
# GH41170
ser = Series(
range(len(values[0])), index=MultiIndex.from_arrays(values), dtype="object"
)
result = ser.reindex(np.array(["b"]), level=0)
expected = Series(
index=MultiIndex(levels=[["b"], values[1]], codes=[[], []]), dtype="object"
)
tm.assert_series_equal(result, expected)
def test_reindex_missing_category():
# GH#18185
ser = Series([1, 2, 3, 1], dtype="category")
msg = r"Cannot setitem on a Categorical with a new category \(-1\)"
with pytest.raises(TypeError, match=msg):
ser.reindex([1, 2, 3, 4, 5], fill_value=-1)
def test_reindexing_with_float64_NA_log():
# GH 47055
s = Series([1.0, NA], dtype=Float64Dtype())
s_reindex = s.reindex(range(3))
result = s_reindex.values._data
expected = np.array([1, np.NaN, np.NaN])
tm.assert_numpy_array_equal(result, expected)
with tm.assert_produces_warning(None):
result_log = np.log(s_reindex)
expected_log = Series([0, np.NaN, np.NaN], dtype=Float64Dtype())
tm.assert_series_equal(result_log, expected_log)