aoc-2022/venv/Lib/site-packages/pandas/tests/series/methods/test_describe.py

182 lines
5.6 KiB
Python
Raw Normal View History

import numpy as np
from pandas.core.dtypes.common import (
is_complex_dtype,
is_extension_array_dtype,
)
from pandas import (
Period,
Series,
Timedelta,
Timestamp,
date_range,
)
import pandas._testing as tm
class TestSeriesDescribe:
def test_describe_ints(self):
ser = Series([0, 1, 2, 3, 4], name="int_data")
result = ser.describe()
expected = Series(
[5, 2, ser.std(), 0, 1, 2, 3, 4],
name="int_data",
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
tm.assert_series_equal(result, expected)
def test_describe_bools(self):
ser = Series([True, True, False, False, False], name="bool_data")
result = ser.describe()
expected = Series(
[5, 2, False, 3], name="bool_data", index=["count", "unique", "top", "freq"]
)
tm.assert_series_equal(result, expected)
def test_describe_strs(self):
ser = Series(["a", "a", "b", "c", "d"], name="str_data")
result = ser.describe()
expected = Series(
[5, 4, "a", 2], name="str_data", index=["count", "unique", "top", "freq"]
)
tm.assert_series_equal(result, expected)
def test_describe_timedelta64(self):
ser = Series(
[
Timedelta("1 days"),
Timedelta("2 days"),
Timedelta("3 days"),
Timedelta("4 days"),
Timedelta("5 days"),
],
name="timedelta_data",
)
result = ser.describe()
expected = Series(
[5, ser[2], ser.std(), ser[0], ser[1], ser[2], ser[3], ser[4]],
name="timedelta_data",
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
tm.assert_series_equal(result, expected)
def test_describe_period(self):
ser = Series(
[Period("2020-01", "M"), Period("2020-01", "M"), Period("2019-12", "M")],
name="period_data",
)
result = ser.describe()
expected = Series(
[3, 2, ser[0], 2],
name="period_data",
index=["count", "unique", "top", "freq"],
)
tm.assert_series_equal(result, expected)
def test_describe_empty_object(self):
# https://github.com/pandas-dev/pandas/issues/27183
s = Series([None, None], dtype=object)
result = s.describe()
expected = Series(
[0, 0, np.nan, np.nan],
dtype=object,
index=["count", "unique", "top", "freq"],
)
tm.assert_series_equal(result, expected)
result = s[:0].describe()
tm.assert_series_equal(result, expected)
# ensure NaN, not None
assert np.isnan(result.iloc[2])
assert np.isnan(result.iloc[3])
def test_describe_with_tz(self, tz_naive_fixture):
# GH 21332
tz = tz_naive_fixture
name = str(tz_naive_fixture)
start = Timestamp(2018, 1, 1)
end = Timestamp(2018, 1, 5)
s = Series(date_range(start, end, tz=tz), name=name)
result = s.describe(datetime_is_numeric=True)
expected = Series(
[
5,
Timestamp(2018, 1, 3).tz_localize(tz),
start.tz_localize(tz),
s[1],
s[2],
s[3],
end.tz_localize(tz),
],
name=name,
index=["count", "mean", "min", "25%", "50%", "75%", "max"],
)
tm.assert_series_equal(result, expected)
def test_describe_with_tz_warns(self):
name = tz = "CET"
start = Timestamp(2018, 1, 1)
end = Timestamp(2018, 1, 5)
s = Series(date_range(start, end, tz=tz), name=name)
with tm.assert_produces_warning(FutureWarning):
result = s.describe()
expected = Series(
[
5,
5,
s.value_counts().index[0],
1,
start.tz_localize(tz),
end.tz_localize(tz),
],
name=name,
index=["count", "unique", "top", "freq", "first", "last"],
)
tm.assert_series_equal(result, expected)
def test_datetime_is_numeric_includes_datetime(self):
s = Series(date_range("2012", periods=3))
result = s.describe(datetime_is_numeric=True)
expected = Series(
[
3,
Timestamp("2012-01-02"),
Timestamp("2012-01-01"),
Timestamp("2012-01-01T12:00:00"),
Timestamp("2012-01-02"),
Timestamp("2012-01-02T12:00:00"),
Timestamp("2012-01-03"),
],
index=["count", "mean", "min", "25%", "50%", "75%", "max"],
)
tm.assert_series_equal(result, expected)
def test_numeric_result_dtype(self, any_numeric_dtype):
# GH#48340 - describe should always return float on non-complex numeric input
if is_extension_array_dtype(any_numeric_dtype):
dtype = "Float64"
else:
dtype = "complex128" if is_complex_dtype(any_numeric_dtype) else None
ser = Series([0, 1], dtype=any_numeric_dtype)
result = ser.describe()
expected = Series(
[
2.0,
0.5,
ser.std(),
0,
0.25,
0.5,
0.75,
1.0,
],
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
dtype=dtype,
)
tm.assert_series_equal(result, expected)