182 lines
5.6 KiB
Python
182 lines
5.6 KiB
Python
|
import numpy as np
|
||
|
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_complex_dtype,
|
||
|
is_extension_array_dtype,
|
||
|
)
|
||
|
|
||
|
from pandas import (
|
||
|
Period,
|
||
|
Series,
|
||
|
Timedelta,
|
||
|
Timestamp,
|
||
|
date_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestSeriesDescribe:
|
||
|
def test_describe_ints(self):
|
||
|
ser = Series([0, 1, 2, 3, 4], name="int_data")
|
||
|
result = ser.describe()
|
||
|
expected = Series(
|
||
|
[5, 2, ser.std(), 0, 1, 2, 3, 4],
|
||
|
name="int_data",
|
||
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_describe_bools(self):
|
||
|
ser = Series([True, True, False, False, False], name="bool_data")
|
||
|
result = ser.describe()
|
||
|
expected = Series(
|
||
|
[5, 2, False, 3], name="bool_data", index=["count", "unique", "top", "freq"]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_describe_strs(self):
|
||
|
|
||
|
ser = Series(["a", "a", "b", "c", "d"], name="str_data")
|
||
|
result = ser.describe()
|
||
|
expected = Series(
|
||
|
[5, 4, "a", 2], name="str_data", index=["count", "unique", "top", "freq"]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_describe_timedelta64(self):
|
||
|
ser = Series(
|
||
|
[
|
||
|
Timedelta("1 days"),
|
||
|
Timedelta("2 days"),
|
||
|
Timedelta("3 days"),
|
||
|
Timedelta("4 days"),
|
||
|
Timedelta("5 days"),
|
||
|
],
|
||
|
name="timedelta_data",
|
||
|
)
|
||
|
result = ser.describe()
|
||
|
expected = Series(
|
||
|
[5, ser[2], ser.std(), ser[0], ser[1], ser[2], ser[3], ser[4]],
|
||
|
name="timedelta_data",
|
||
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_describe_period(self):
|
||
|
ser = Series(
|
||
|
[Period("2020-01", "M"), Period("2020-01", "M"), Period("2019-12", "M")],
|
||
|
name="period_data",
|
||
|
)
|
||
|
result = ser.describe()
|
||
|
expected = Series(
|
||
|
[3, 2, ser[0], 2],
|
||
|
name="period_data",
|
||
|
index=["count", "unique", "top", "freq"],
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_describe_empty_object(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/27183
|
||
|
s = Series([None, None], dtype=object)
|
||
|
result = s.describe()
|
||
|
expected = Series(
|
||
|
[0, 0, np.nan, np.nan],
|
||
|
dtype=object,
|
||
|
index=["count", "unique", "top", "freq"],
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s[:0].describe()
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
# ensure NaN, not None
|
||
|
assert np.isnan(result.iloc[2])
|
||
|
assert np.isnan(result.iloc[3])
|
||
|
|
||
|
def test_describe_with_tz(self, tz_naive_fixture):
|
||
|
# GH 21332
|
||
|
tz = tz_naive_fixture
|
||
|
name = str(tz_naive_fixture)
|
||
|
start = Timestamp(2018, 1, 1)
|
||
|
end = Timestamp(2018, 1, 5)
|
||
|
s = Series(date_range(start, end, tz=tz), name=name)
|
||
|
result = s.describe(datetime_is_numeric=True)
|
||
|
expected = Series(
|
||
|
[
|
||
|
5,
|
||
|
Timestamp(2018, 1, 3).tz_localize(tz),
|
||
|
start.tz_localize(tz),
|
||
|
s[1],
|
||
|
s[2],
|
||
|
s[3],
|
||
|
end.tz_localize(tz),
|
||
|
],
|
||
|
name=name,
|
||
|
index=["count", "mean", "min", "25%", "50%", "75%", "max"],
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_describe_with_tz_warns(self):
|
||
|
name = tz = "CET"
|
||
|
start = Timestamp(2018, 1, 1)
|
||
|
end = Timestamp(2018, 1, 5)
|
||
|
s = Series(date_range(start, end, tz=tz), name=name)
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
result = s.describe()
|
||
|
|
||
|
expected = Series(
|
||
|
[
|
||
|
5,
|
||
|
5,
|
||
|
s.value_counts().index[0],
|
||
|
1,
|
||
|
start.tz_localize(tz),
|
||
|
end.tz_localize(tz),
|
||
|
],
|
||
|
name=name,
|
||
|
index=["count", "unique", "top", "freq", "first", "last"],
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_datetime_is_numeric_includes_datetime(self):
|
||
|
s = Series(date_range("2012", periods=3))
|
||
|
result = s.describe(datetime_is_numeric=True)
|
||
|
expected = Series(
|
||
|
[
|
||
|
3,
|
||
|
Timestamp("2012-01-02"),
|
||
|
Timestamp("2012-01-01"),
|
||
|
Timestamp("2012-01-01T12:00:00"),
|
||
|
Timestamp("2012-01-02"),
|
||
|
Timestamp("2012-01-02T12:00:00"),
|
||
|
Timestamp("2012-01-03"),
|
||
|
],
|
||
|
index=["count", "mean", "min", "25%", "50%", "75%", "max"],
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_numeric_result_dtype(self, any_numeric_dtype):
|
||
|
# GH#48340 - describe should always return float on non-complex numeric input
|
||
|
if is_extension_array_dtype(any_numeric_dtype):
|
||
|
dtype = "Float64"
|
||
|
else:
|
||
|
dtype = "complex128" if is_complex_dtype(any_numeric_dtype) else None
|
||
|
|
||
|
ser = Series([0, 1], dtype=any_numeric_dtype)
|
||
|
result = ser.describe()
|
||
|
expected = Series(
|
||
|
[
|
||
|
2.0,
|
||
|
0.5,
|
||
|
ser.std(),
|
||
|
0,
|
||
|
0.25,
|
||
|
0.5,
|
||
|
0.75,
|
||
|
1.0,
|
||
|
],
|
||
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|