aoc-2022/venv/Lib/site-packages/pandas/tests/reductions/test_reductions.py

1537 lines
50 KiB
Python
Raw Normal View History

from datetime import (
datetime,
timedelta,
)
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
DataFrame,
DatetimeIndex,
Index,
NaT,
Period,
PeriodIndex,
RangeIndex,
Series,
Timedelta,
TimedeltaIndex,
Timestamp,
date_range,
isna,
timedelta_range,
to_timedelta,
)
import pandas._testing as tm
from pandas.core import nanops
def get_objs():
indexes = [
tm.makeBoolIndex(10, name="a"),
tm.makeIntIndex(10, name="a"),
tm.makeFloatIndex(10, name="a"),
tm.makeDateIndex(10, name="a"),
tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern"),
tm.makePeriodIndex(10, name="a"),
tm.makeStringIndex(10, name="a"),
]
arr = np.random.randn(10)
series = [Series(arr, index=idx, name="a") for idx in indexes]
objs = indexes + series
return objs
objs = get_objs()
class TestReductions:
@pytest.mark.parametrize("opname", ["max", "min"])
@pytest.mark.parametrize("obj", objs)
def test_ops(self, opname, obj):
result = getattr(obj, opname)()
if not isinstance(obj, PeriodIndex):
expected = getattr(obj.values, opname)()
else:
expected = Period(ordinal=getattr(obj.asi8, opname)(), freq=obj.freq)
if getattr(obj, "tz", None) is not None:
# We need to de-localize before comparing to the numpy-produced result
expected = expected.astype("M8[ns]").astype("int64")
assert result.value == expected
else:
assert result == expected
@pytest.mark.parametrize("opname", ["max", "min"])
@pytest.mark.parametrize(
"dtype, val",
[
("object", 2.0),
("float64", 2.0),
("datetime64[ns]", datetime(2011, 11, 1)),
("Int64", 2),
("boolean", True),
],
)
def test_nanminmax(self, opname, dtype, val, index_or_series):
# GH#7261
klass = index_or_series
def check_missing(res):
if dtype == "datetime64[ns]":
return res is NaT
elif dtype in ["Int64", "boolean"]:
return res is pd.NA
else:
return isna(res)
obj = klass([None], dtype=dtype)
assert check_missing(getattr(obj, opname)())
assert check_missing(getattr(obj, opname)(skipna=False))
obj = klass([], dtype=dtype)
assert check_missing(getattr(obj, opname)())
assert check_missing(getattr(obj, opname)(skipna=False))
if dtype == "object":
# generic test with object only works for empty / all NaN
return
obj = klass([None, val], dtype=dtype)
assert getattr(obj, opname)() == val
assert check_missing(getattr(obj, opname)(skipna=False))
obj = klass([None, val, None], dtype=dtype)
assert getattr(obj, opname)() == val
assert check_missing(getattr(obj, opname)(skipna=False))
@pytest.mark.parametrize("opname", ["max", "min"])
def test_nanargminmax(self, opname, index_or_series):
# GH#7261
klass = index_or_series
arg_op = "arg" + opname if klass is Index else "idx" + opname
obj = klass([NaT, datetime(2011, 11, 1)])
assert getattr(obj, arg_op)() == 1
result = getattr(obj, arg_op)(skipna=False)
if klass is Series:
assert np.isnan(result)
else:
assert result == -1
obj = klass([NaT, datetime(2011, 11, 1), NaT])
# check DatetimeIndex non-monotonic path
assert getattr(obj, arg_op)() == 1
result = getattr(obj, arg_op)(skipna=False)
if klass is Series:
assert np.isnan(result)
else:
assert result == -1
@pytest.mark.parametrize("opname", ["max", "min"])
@pytest.mark.parametrize("dtype", ["M8[ns]", "datetime64[ns, UTC]"])
def test_nanops_empty_object(self, opname, index_or_series, dtype):
klass = index_or_series
arg_op = "arg" + opname if klass is Index else "idx" + opname
obj = klass([], dtype=dtype)
assert getattr(obj, opname)() is NaT
assert getattr(obj, opname)(skipna=False) is NaT
with pytest.raises(ValueError, match="empty sequence"):
getattr(obj, arg_op)()
with pytest.raises(ValueError, match="empty sequence"):
getattr(obj, arg_op)(skipna=False)
def test_argminmax(self):
obj = Index(np.arange(5, dtype="int64"))
assert obj.argmin() == 0
assert obj.argmax() == 4
obj = Index([np.nan, 1, np.nan, 2])
assert obj.argmin() == 1
assert obj.argmax() == 3
assert obj.argmin(skipna=False) == -1
assert obj.argmax(skipna=False) == -1
obj = Index([np.nan])
assert obj.argmin() == -1
assert obj.argmax() == -1
assert obj.argmin(skipna=False) == -1
assert obj.argmax(skipna=False) == -1
obj = Index([NaT, datetime(2011, 11, 1), datetime(2011, 11, 2), NaT])
assert obj.argmin() == 1
assert obj.argmax() == 2
assert obj.argmin(skipna=False) == -1
assert obj.argmax(skipna=False) == -1
obj = Index([NaT])
assert obj.argmin() == -1
assert obj.argmax() == -1
assert obj.argmin(skipna=False) == -1
assert obj.argmax(skipna=False) == -1
@pytest.mark.parametrize("op, expected_col", [["max", "a"], ["min", "b"]])
def test_same_tz_min_max_axis_1(self, op, expected_col):
# GH 10390
df = DataFrame(
date_range("2016-01-01 00:00:00", periods=3, tz="UTC"), columns=["a"]
)
df["b"] = df.a.subtract(Timedelta(seconds=3600))
result = getattr(df, op)(axis=1)
expected = df[expected_col].rename(None)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("func", ["maximum", "minimum"])
def test_numpy_reduction_with_tz_aware_dtype(self, tz_aware_fixture, func):
# GH 15552
tz = tz_aware_fixture
arg = pd.to_datetime(["2019"]).tz_localize(tz)
expected = Series(arg)
result = getattr(np, func)(expected, expected)
tm.assert_series_equal(result, expected)
def test_nan_int_timedelta_sum(self):
# GH 27185
df = DataFrame(
{
"A": Series([1, 2, NaT], dtype="timedelta64[ns]"),
"B": Series([1, 2, np.nan], dtype="Int64"),
}
)
expected = Series({"A": Timedelta(3), "B": 3})
result = df.sum()
tm.assert_series_equal(result, expected)
class TestIndexReductions:
# Note: the name TestIndexReductions indicates these tests
# were moved from a Index-specific test file, _not_ that these tests are
# intended long-term to be Index-specific
@pytest.mark.parametrize(
"start,stop,step",
[
(0, 400, 3),
(500, 0, -6),
(-(10**6), 10**6, 4),
(10**6, -(10**6), -4),
(0, 10, 20),
],
)
def test_max_min_range(self, start, stop, step):
# GH#17607
idx = RangeIndex(start, stop, step)
expected = idx._values.max()
result = idx.max()
assert result == expected
# skipna should be irrelevant since RangeIndex should never have NAs
result2 = idx.max(skipna=False)
assert result2 == expected
expected = idx._values.min()
result = idx.min()
assert result == expected
# skipna should be irrelevant since RangeIndex should never have NAs
result2 = idx.min(skipna=False)
assert result2 == expected
# empty
idx = RangeIndex(start, stop, -step)
assert isna(idx.max())
assert isna(idx.min())
def test_minmax_timedelta64(self):
# monotonic
idx1 = TimedeltaIndex(["1 days", "2 days", "3 days"])
assert idx1.is_monotonic_increasing
# non-monotonic
idx2 = TimedeltaIndex(["1 days", np.nan, "3 days", "NaT"])
assert not idx2.is_monotonic_increasing
for idx in [idx1, idx2]:
assert idx.min() == Timedelta("1 days")
assert idx.max() == Timedelta("3 days")
assert idx.argmin() == 0
assert idx.argmax() == 2
@pytest.mark.parametrize("op", ["min", "max"])
def test_minmax_timedelta_empty_or_na(self, op):
# Return NaT
obj = TimedeltaIndex([])
assert getattr(obj, op)() is NaT
obj = TimedeltaIndex([NaT])
assert getattr(obj, op)() is NaT
obj = TimedeltaIndex([NaT, NaT, NaT])
assert getattr(obj, op)() is NaT
def test_numpy_minmax_timedelta64(self):
td = timedelta_range("16815 days", "16820 days", freq="D")
assert np.min(td) == Timedelta("16815 days")
assert np.max(td) == Timedelta("16820 days")
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.min(td, out=0)
with pytest.raises(ValueError, match=errmsg):
np.max(td, out=0)
assert np.argmin(td) == 0
assert np.argmax(td) == 5
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.argmin(td, out=0)
with pytest.raises(ValueError, match=errmsg):
np.argmax(td, out=0)
def test_timedelta_ops(self):
# GH#4984
# make sure ops return Timedelta
s = Series(
[Timestamp("20130101") + timedelta(seconds=i * i) for i in range(10)]
)
td = s.diff()
result = td.mean()
expected = to_timedelta(timedelta(seconds=9))
assert result == expected
result = td.to_frame().mean()
assert result[0] == expected
result = td.quantile(0.1)
expected = Timedelta(np.timedelta64(2600, "ms"))
assert result == expected
result = td.median()
expected = to_timedelta("00:00:09")
assert result == expected
result = td.to_frame().median()
assert result[0] == expected
# GH#6462
# consistency in returned values for sum
result = td.sum()
expected = to_timedelta("00:01:21")
assert result == expected
result = td.to_frame().sum()
assert result[0] == expected
# std
result = td.std()
expected = to_timedelta(Series(td.dropna().values).std())
assert result == expected
result = td.to_frame().std()
assert result[0] == expected
# GH#10040
# make sure NaT is properly handled by median()
s = Series([Timestamp("2015-02-03"), Timestamp("2015-02-07")])
assert s.diff().median() == timedelta(days=4)
s = Series(
[Timestamp("2015-02-03"), Timestamp("2015-02-07"), Timestamp("2015-02-15")]
)
assert s.diff().median() == timedelta(days=6)
@pytest.mark.parametrize("opname", ["skew", "kurt", "sem", "prod", "var"])
def test_invalid_td64_reductions(self, opname):
s = Series(
[Timestamp("20130101") + timedelta(seconds=i * i) for i in range(10)]
)
td = s.diff()
msg = "|".join(
[
f"reduction operation '{opname}' not allowed for this dtype",
rf"cannot perform {opname} with type timedelta64\[ns\]",
f"does not support reduction '{opname}'",
]
)
with pytest.raises(TypeError, match=msg):
getattr(td, opname)()
with pytest.raises(TypeError, match=msg):
getattr(td.to_frame(), opname)(numeric_only=False)
def test_minmax_tz(self, tz_naive_fixture):
tz = tz_naive_fixture
# monotonic
idx1 = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz=tz)
assert idx1.is_monotonic_increasing
# non-monotonic
idx2 = DatetimeIndex(
["2011-01-01", NaT, "2011-01-03", "2011-01-02", NaT], tz=tz
)
assert not idx2.is_monotonic_increasing
for idx in [idx1, idx2]:
assert idx.min() == Timestamp("2011-01-01", tz=tz)
assert idx.max() == Timestamp("2011-01-03", tz=tz)
assert idx.argmin() == 0
assert idx.argmax() == 2
@pytest.mark.parametrize("op", ["min", "max"])
def test_minmax_nat_datetime64(self, op):
# Return NaT
obj = DatetimeIndex([])
assert isna(getattr(obj, op)())
obj = DatetimeIndex([NaT])
assert isna(getattr(obj, op)())
obj = DatetimeIndex([NaT, NaT, NaT])
assert isna(getattr(obj, op)())
def test_numpy_minmax_integer(self):
# GH#26125
idx = Index([1, 2, 3])
expected = idx.values.max()
result = np.max(idx)
assert result == expected
expected = idx.values.min()
result = np.min(idx)
assert result == expected
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.min(idx, out=0)
with pytest.raises(ValueError, match=errmsg):
np.max(idx, out=0)
expected = idx.values.argmax()
result = np.argmax(idx)
assert result == expected
expected = idx.values.argmin()
result = np.argmin(idx)
assert result == expected
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.argmin(idx, out=0)
with pytest.raises(ValueError, match=errmsg):
np.argmax(idx, out=0)
def test_numpy_minmax_range(self):
# GH#26125
idx = RangeIndex(0, 10, 3)
result = np.max(idx)
assert result == 9
result = np.min(idx)
assert result == 0
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.min(idx, out=0)
with pytest.raises(ValueError, match=errmsg):
np.max(idx, out=0)
# No need to test again argmax/argmin compat since the implementation
# is the same as basic integer index
def test_numpy_minmax_datetime64(self):
dr = date_range(start="2016-01-15", end="2016-01-20")
assert np.min(dr) == Timestamp("2016-01-15 00:00:00")
assert np.max(dr) == Timestamp("2016-01-20 00:00:00")
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.min(dr, out=0)
with pytest.raises(ValueError, match=errmsg):
np.max(dr, out=0)
assert np.argmin(dr) == 0
assert np.argmax(dr) == 5
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.argmin(dr, out=0)
with pytest.raises(ValueError, match=errmsg):
np.argmax(dr, out=0)
def test_minmax_period(self):
# monotonic
idx1 = PeriodIndex([NaT, "2011-01-01", "2011-01-02", "2011-01-03"], freq="D")
assert not idx1.is_monotonic_increasing
assert idx1[1:].is_monotonic_increasing
# non-monotonic
idx2 = PeriodIndex(
["2011-01-01", NaT, "2011-01-03", "2011-01-02", NaT], freq="D"
)
assert not idx2.is_monotonic_increasing
for idx in [idx1, idx2]:
assert idx.min() == Period("2011-01-01", freq="D")
assert idx.max() == Period("2011-01-03", freq="D")
assert idx1.argmin() == 1
assert idx2.argmin() == 0
assert idx1.argmax() == 3
assert idx2.argmax() == 2
@pytest.mark.parametrize("op", ["min", "max"])
@pytest.mark.parametrize("data", [[], [NaT], [NaT, NaT, NaT]])
def test_minmax_period_empty_nat(self, op, data):
# Return NaT
obj = PeriodIndex(data, freq="M")
result = getattr(obj, op)()
assert result is NaT
def test_numpy_minmax_period(self):
pr = pd.period_range(start="2016-01-15", end="2016-01-20")
assert np.min(pr) == Period("2016-01-15", freq="D")
assert np.max(pr) == Period("2016-01-20", freq="D")
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.min(pr, out=0)
with pytest.raises(ValueError, match=errmsg):
np.max(pr, out=0)
assert np.argmin(pr) == 0
assert np.argmax(pr) == 5
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
np.argmin(pr, out=0)
with pytest.raises(ValueError, match=errmsg):
np.argmax(pr, out=0)
def test_min_max_categorical(self):
ci = pd.CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
msg = (
r"Categorical is not ordered for operation min\n"
r"you can use .as_ordered\(\) to change the Categorical to an ordered one\n"
)
with pytest.raises(TypeError, match=msg):
ci.min()
msg = (
r"Categorical is not ordered for operation max\n"
r"you can use .as_ordered\(\) to change the Categorical to an ordered one\n"
)
with pytest.raises(TypeError, match=msg):
ci.max()
ci = pd.CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=True)
assert ci.min() == "c"
assert ci.max() == "b"
class TestSeriesReductions:
# Note: the name TestSeriesReductions indicates these tests
# were moved from a series-specific test file, _not_ that these tests are
# intended long-term to be series-specific
def test_sum_inf(self):
s = Series(np.random.randn(10))
s2 = s.copy()
s[5:8] = np.inf
s2[5:8] = np.nan
assert np.isinf(s.sum())
arr = np.random.randn(100, 100).astype("f4")
arr[:, 2] = np.inf
with pd.option_context("mode.use_inf_as_na", True):
tm.assert_almost_equal(s.sum(), s2.sum())
res = nanops.nansum(arr, axis=1)
assert np.isinf(res).all()
@pytest.mark.parametrize(
"dtype", ["float64", "Float32", "Int64", "boolean", "object"]
)
@pytest.mark.parametrize("use_bottleneck", [True, False])
@pytest.mark.parametrize("method, unit", [("sum", 0.0), ("prod", 1.0)])
def test_empty(self, method, unit, use_bottleneck, dtype):
with pd.option_context("use_bottleneck", use_bottleneck):
# GH#9422 / GH#18921
# Entirely empty
s = Series([], dtype=dtype)
# NA by default
result = getattr(s, method)()
assert result == unit
# Explicit
result = getattr(s, method)(min_count=0)
assert result == unit
result = getattr(s, method)(min_count=1)
assert isna(result)
# Skipna, default
result = getattr(s, method)(skipna=True)
result == unit
# Skipna, explicit
result = getattr(s, method)(skipna=True, min_count=0)
assert result == unit
result = getattr(s, method)(skipna=True, min_count=1)
assert isna(result)
result = getattr(s, method)(skipna=False, min_count=0)
assert result == unit
result = getattr(s, method)(skipna=False, min_count=1)
assert isna(result)
# All-NA
s = Series([np.nan], dtype=dtype)
# NA by default
result = getattr(s, method)()
assert result == unit
# Explicit
result = getattr(s, method)(min_count=0)
assert result == unit
result = getattr(s, method)(min_count=1)
assert isna(result)
# Skipna, default
result = getattr(s, method)(skipna=True)
result == unit
# skipna, explicit
result = getattr(s, method)(skipna=True, min_count=0)
assert result == unit
result = getattr(s, method)(skipna=True, min_count=1)
assert isna(result)
# Mix of valid, empty
s = Series([np.nan, 1], dtype=dtype)
# Default
result = getattr(s, method)()
assert result == 1.0
# Explicit
result = getattr(s, method)(min_count=0)
assert result == 1.0
result = getattr(s, method)(min_count=1)
assert result == 1.0
# Skipna
result = getattr(s, method)(skipna=True)
assert result == 1.0
result = getattr(s, method)(skipna=True, min_count=0)
assert result == 1.0
# GH#844 (changed in GH#9422)
df = DataFrame(np.empty((10, 0)), dtype=dtype)
assert (getattr(df, method)(1) == unit).all()
s = Series([1], dtype=dtype)
result = getattr(s, method)(min_count=2)
assert isna(result)
result = getattr(s, method)(skipna=False, min_count=2)
assert isna(result)
s = Series([np.nan], dtype=dtype)
result = getattr(s, method)(min_count=2)
assert isna(result)
s = Series([np.nan, 1], dtype=dtype)
result = getattr(s, method)(min_count=2)
assert isna(result)
@pytest.mark.parametrize("method, unit", [("sum", 0.0), ("prod", 1.0)])
def test_empty_multi(self, method, unit):
s = Series(
[1, np.nan, np.nan, np.nan],
index=pd.MultiIndex.from_product([("a", "b"), (0, 1)]),
)
# 1 / 0 by default
with tm.assert_produces_warning(FutureWarning):
result = getattr(s, method)(level=0)
expected = Series([1, unit], index=["a", "b"])
tm.assert_series_equal(result, expected)
# min_count=0
with tm.assert_produces_warning(FutureWarning):
result = getattr(s, method)(level=0, min_count=0)
expected = Series([1, unit], index=["a", "b"])
tm.assert_series_equal(result, expected)
# min_count=1
with tm.assert_produces_warning(FutureWarning):
result = getattr(s, method)(level=0, min_count=1)
expected = Series([1, np.nan], index=["a", "b"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method", ["mean"])
@pytest.mark.parametrize("dtype", ["Float64", "Int64", "boolean"])
def test_ops_consistency_on_empty_nullable(self, method, dtype):
# GH#34814
# consistency for nullable dtypes on empty or ALL-NA mean
# empty series
eser = Series([], dtype=dtype)
result = getattr(eser, method)()
assert result is pd.NA
# ALL-NA series
nser = Series([np.nan], dtype=dtype)
result = getattr(nser, method)()
assert result is pd.NA
@pytest.mark.parametrize("method", ["mean", "median", "std", "var"])
def test_ops_consistency_on_empty(self, method):
# GH#7869
# consistency on empty
# float
result = getattr(Series(dtype=float), method)()
assert isna(result)
# timedelta64[ns]
tdser = Series([], dtype="m8[ns]")
if method == "var":
msg = "|".join(
[
"operation 'var' not allowed",
r"cannot perform var with type timedelta64\[ns\]",
"does not support reduction 'var'",
]
)
with pytest.raises(TypeError, match=msg):
getattr(tdser, method)()
else:
result = getattr(tdser, method)()
assert result is NaT
def test_nansum_buglet(self):
ser = Series([1.0, np.nan], index=[0, 1])
result = np.nansum(ser)
tm.assert_almost_equal(result, 1)
@pytest.mark.parametrize("use_bottleneck", [True, False])
@pytest.mark.parametrize("dtype", ["int32", "int64"])
def test_sum_overflow_int(self, use_bottleneck, dtype):
with pd.option_context("use_bottleneck", use_bottleneck):
# GH#6915
# overflowing on the smaller int dtypes
v = np.arange(5000000, dtype=dtype)
s = Series(v)
result = s.sum(skipna=False)
assert int(result) == v.sum(dtype="int64")
result = s.min(skipna=False)
assert int(result) == 0
result = s.max(skipna=False)
assert int(result) == v[-1]
@pytest.mark.parametrize("use_bottleneck", [True, False])
@pytest.mark.parametrize("dtype", ["float32", "float64"])
def test_sum_overflow_float(self, use_bottleneck, dtype):
with pd.option_context("use_bottleneck", use_bottleneck):
v = np.arange(5000000, dtype=dtype)
s = Series(v)
result = s.sum(skipna=False)
assert result == v.sum(dtype=dtype)
result = s.min(skipna=False)
assert np.allclose(float(result), 0.0)
result = s.max(skipna=False)
assert np.allclose(float(result), v[-1])
@pytest.mark.parametrize("dtype", ("m8[ns]", "m8[ns]", "M8[ns]", "M8[ns, UTC]"))
@pytest.mark.parametrize("skipna", [True, False])
def test_empty_timeseries_reductions_return_nat(self, dtype, skipna):
# covers GH#11245
assert Series([], dtype=dtype).min(skipna=skipna) is NaT
assert Series([], dtype=dtype).max(skipna=skipna) is NaT
def test_numpy_argmin(self):
# See GH#16830
data = np.arange(1, 11)
s = Series(data, index=data)
result = np.argmin(s)
expected = np.argmin(data)
assert result == expected
result = s.argmin()
assert result == expected
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argmin(s, out=data)
def test_numpy_argmax(self):
# See GH#16830
data = np.arange(1, 11)
s = Series(data, index=data)
result = np.argmax(s)
expected = np.argmax(data)
assert result == expected
result = s.argmax()
assert result == expected
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argmax(s, out=data)
def test_idxmin(self):
# test idxmin
# _check_stat_op approach can not be used here because of isna check.
string_series = tm.makeStringSeries().rename("series")
# add some NaNs
string_series[5:15] = np.NaN
# skipna or no
assert string_series[string_series.idxmin()] == string_series.min()
assert isna(string_series.idxmin(skipna=False))
# no NaNs
nona = string_series.dropna()
assert nona[nona.idxmin()] == nona.min()
assert nona.index.values.tolist().index(nona.idxmin()) == nona.values.argmin()
# all NaNs
allna = string_series * np.nan
assert isna(allna.idxmin())
# datetime64[ns]
s = Series(date_range("20130102", periods=6))
result = s.idxmin()
assert result == 0
s[0] = np.nan
result = s.idxmin()
assert result == 1
def test_idxmax(self):
# test idxmax
# _check_stat_op approach can not be used here because of isna check.
string_series = tm.makeStringSeries().rename("series")
# add some NaNs
string_series[5:15] = np.NaN
# skipna or no
assert string_series[string_series.idxmax()] == string_series.max()
assert isna(string_series.idxmax(skipna=False))
# no NaNs
nona = string_series.dropna()
assert nona[nona.idxmax()] == nona.max()
assert nona.index.values.tolist().index(nona.idxmax()) == nona.values.argmax()
# all NaNs
allna = string_series * np.nan
assert isna(allna.idxmax())
from pandas import date_range
s = Series(date_range("20130102", periods=6))
result = s.idxmax()
assert result == 5
s[5] = np.nan
result = s.idxmax()
assert result == 4
# Float64Index
# GH#5914
s = Series([1, 2, 3], [1.1, 2.1, 3.1])
result = s.idxmax()
assert result == 3.1
result = s.idxmin()
assert result == 1.1
s = Series(s.index, s.index)
result = s.idxmax()
assert result == 3.1
result = s.idxmin()
assert result == 1.1
def test_all_any(self):
ts = tm.makeTimeSeries()
bool_series = ts > 0
assert not bool_series.all()
assert bool_series.any()
# Alternative types, with implicit 'object' dtype.
s = Series(["abc", True])
assert s.any()
@pytest.mark.parametrize("klass", [Index, Series])
def test_numpy_all_any(self, klass):
# GH#40180
idx = klass([0, 1, 2])
assert not np.all(idx)
assert np.any(idx)
idx = Index([1, 2, 3])
assert np.all(idx)
def test_all_any_params(self):
# Check skipna, with implicit 'object' dtype.
s1 = Series([np.nan, True])
s2 = Series([np.nan, False])
assert s1.all(skipna=False) # nan && True => True
assert s1.all(skipna=True)
assert s2.any(skipna=False)
assert not s2.any(skipna=True)
# Check level.
s = Series([False, False, True, True, False, True], index=[0, 0, 1, 1, 2, 2])
with tm.assert_produces_warning(FutureWarning):
tm.assert_series_equal(s.all(level=0), Series([False, True, False]))
with tm.assert_produces_warning(FutureWarning):
tm.assert_series_equal(s.any(level=0), Series([False, True, True]))
msg = "Option bool_only is not implemented with option level"
with pytest.raises(NotImplementedError, match=msg):
with tm.assert_produces_warning(FutureWarning):
s.any(bool_only=True, level=0)
with pytest.raises(NotImplementedError, match=msg):
with tm.assert_produces_warning(FutureWarning):
s.all(bool_only=True, level=0)
# GH#47500 - test bool_only works
assert s.any(bool_only=True)
assert not s.all(bool_only=True)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
def test_any_all_object_dtype(self, bool_agg_func, skipna):
# GH#12863
ser = Series(["a", "b", "c", "d", "e"], dtype=object)
result = getattr(ser, bool_agg_func)(skipna=skipna)
expected = True
assert result == expected
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize(
"data", [[False, None], [None, False], [False, np.nan], [np.nan, False]]
)
def test_any_all_object_dtype_missing(self, data, bool_agg_func):
# GH#27709
ser = Series(data)
result = getattr(ser, bool_agg_func)(skipna=False)
# None is treated is False, but np.nan is treated as True
expected = bool_agg_func == "any" and None not in data
assert result == expected
@pytest.mark.parametrize("dtype", ["boolean", "Int64", "UInt64", "Float64"])
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize(
# expected_data indexed as [[skipna=False/any, skipna=False/all],
# [skipna=True/any, skipna=True/all]]
"data,expected_data",
[
([0, 0, 0], [[False, False], [False, False]]),
([1, 1, 1], [[True, True], [True, True]]),
([pd.NA, pd.NA, pd.NA], [[pd.NA, pd.NA], [False, True]]),
([0, pd.NA, 0], [[pd.NA, False], [False, False]]),
([1, pd.NA, 1], [[True, pd.NA], [True, True]]),
([1, pd.NA, 0], [[True, False], [True, False]]),
],
)
def test_any_all_nullable_kleene_logic(
self, bool_agg_func, skipna, data, dtype, expected_data
):
# GH-37506, GH-41967
ser = Series(data, dtype=dtype)
expected = expected_data[skipna][bool_agg_func == "all"]
result = getattr(ser, bool_agg_func)(skipna=skipna)
assert (result is pd.NA and expected is pd.NA) or result == expected
@pytest.mark.parametrize(
"bool_agg_func,expected",
[("all", [False, True, False]), ("any", [False, True, True])],
)
def test_any_all_boolean_level(self, bool_agg_func, expected):
# GH#33449
ser = Series(
[False, False, True, True, False, True],
index=[0, 0, 1, 1, 2, 2],
dtype="boolean",
)
with tm.assert_produces_warning(FutureWarning):
result = getattr(ser, bool_agg_func)(level=0)
expected = Series(expected, dtype="boolean")
tm.assert_series_equal(result, expected)
def test_any_axis1_bool_only(self):
# GH#32432
df = DataFrame({"A": [True, False], "B": [1, 2]})
result = df.any(axis=1, bool_only=True)
expected = Series([True, False])
tm.assert_series_equal(result, expected)
def test_any_all_datetimelike(self):
# GH#38723 these may not be the desired long-term behavior (GH#34479)
# but in the interim should be internally consistent
dta = date_range("1995-01-02", periods=3)._data
ser = Series(dta)
df = DataFrame(ser)
assert dta.all()
assert dta.any()
assert ser.all()
assert ser.any()
assert df.any().all()
assert df.all().all()
dta = dta.tz_localize("UTC")
ser = Series(dta)
df = DataFrame(ser)
assert dta.all()
assert dta.any()
assert ser.all()
assert ser.any()
assert df.any().all()
assert df.all().all()
tda = dta - dta[0]
ser = Series(tda)
df = DataFrame(ser)
assert tda.any()
assert not tda.all()
assert ser.any()
assert not ser.all()
assert df.any().all()
assert not df.all().any()
def test_timedelta64_analytics(self):
# index min/max
dti = date_range("2012-1-1", periods=3, freq="D")
td = Series(dti) - Timestamp("20120101")
result = td.idxmin()
assert result == 0
result = td.idxmax()
assert result == 2
# GH#2982
# with NaT
td[0] = np.nan
result = td.idxmin()
assert result == 1
result = td.idxmax()
assert result == 2
# abs
s1 = Series(date_range("20120101", periods=3))
s2 = Series(date_range("20120102", periods=3))
expected = Series(s2 - s1)
result = np.abs(s1 - s2)
tm.assert_series_equal(result, expected)
result = (s1 - s2).abs()
tm.assert_series_equal(result, expected)
# max/min
result = td.max()
expected = Timedelta("2 days")
assert result == expected
result = td.min()
expected = Timedelta("1 days")
assert result == expected
@pytest.mark.parametrize(
"test_input,error_type",
[
(Series([], dtype="float64"), ValueError),
# For strings, or any Series with dtype 'O'
(Series(["foo", "bar", "baz"]), TypeError),
(Series([(1,), (2,)]), TypeError),
# For mixed data types
(Series(["foo", "foo", "bar", "bar", None, np.nan, "baz"]), TypeError),
],
)
def test_assert_idxminmax_raises(self, test_input, error_type):
"""
Cases where ``Series.argmax`` and related should raise an exception
"""
msg = (
"reduction operation 'argmin' not allowed for this dtype|"
"attempt to get argmin of an empty sequence"
)
with pytest.raises(error_type, match=msg):
test_input.idxmin()
with pytest.raises(error_type, match=msg):
test_input.idxmin(skipna=False)
msg = (
"reduction operation 'argmax' not allowed for this dtype|"
"attempt to get argmax of an empty sequence"
)
with pytest.raises(error_type, match=msg):
test_input.idxmax()
with pytest.raises(error_type, match=msg):
test_input.idxmax(skipna=False)
def test_idxminmax_with_inf(self):
# For numeric data with NA and Inf (GH #13595)
s = Series([0, -np.inf, np.inf, np.nan])
assert s.idxmin() == 1
assert np.isnan(s.idxmin(skipna=False))
assert s.idxmax() == 2
assert np.isnan(s.idxmax(skipna=False))
# Using old-style behavior that treats floating point nan, -inf, and
# +inf as missing
with pd.option_context("mode.use_inf_as_na", True):
assert s.idxmin() == 0
assert np.isnan(s.idxmin(skipna=False))
assert s.idxmax() == 0
np.isnan(s.idxmax(skipna=False))
class TestDatetime64SeriesReductions:
# Note: the name TestDatetime64SeriesReductions indicates these tests
# were moved from a series-specific test file, _not_ that these tests are
# intended long-term to be series-specific
@pytest.mark.parametrize(
"nat_ser",
[
Series([NaT, NaT]),
Series([NaT, Timedelta("nat")]),
Series([Timedelta("nat"), Timedelta("nat")]),
],
)
def test_minmax_nat_series(self, nat_ser):
# GH#23282
assert nat_ser.min() is NaT
assert nat_ser.max() is NaT
assert nat_ser.min(skipna=False) is NaT
assert nat_ser.max(skipna=False) is NaT
@pytest.mark.parametrize(
"nat_df",
[
DataFrame([NaT, NaT]),
DataFrame([NaT, Timedelta("nat")]),
DataFrame([Timedelta("nat"), Timedelta("nat")]),
],
)
def test_minmax_nat_dataframe(self, nat_df):
# GH#23282
assert nat_df.min()[0] is NaT
assert nat_df.max()[0] is NaT
assert nat_df.min(skipna=False)[0] is NaT
assert nat_df.max(skipna=False)[0] is NaT
def test_min_max(self):
rng = date_range("1/1/2000", "12/31/2000")
rng2 = rng.take(np.random.permutation(len(rng)))
the_min = rng2.min()
the_max = rng2.max()
assert isinstance(the_min, Timestamp)
assert isinstance(the_max, Timestamp)
assert the_min == rng[0]
assert the_max == rng[-1]
assert rng.min() == rng[0]
assert rng.max() == rng[-1]
def test_min_max_series(self):
rng = date_range("1/1/2000", periods=10, freq="4h")
lvls = ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"]
df = DataFrame({"TS": rng, "V": np.random.randn(len(rng)), "L": lvls})
result = df.TS.max()
exp = Timestamp(df.TS.iat[-1])
assert isinstance(result, Timestamp)
assert result == exp
result = df.TS.min()
exp = Timestamp(df.TS.iat[0])
assert isinstance(result, Timestamp)
assert result == exp
class TestCategoricalSeriesReductions:
# Note: the name TestCategoricalSeriesReductions indicates these tests
# were moved from a series-specific test file, _not_ that these tests are
# intended long-term to be series-specific
@pytest.mark.parametrize("function", ["min", "max"])
def test_min_max_unordered_raises(self, function):
# unordered cats have no min/max
cat = Series(Categorical(["a", "b", "c", "d"], ordered=False))
msg = f"Categorical is not ordered for operation {function}"
with pytest.raises(TypeError, match=msg):
getattr(cat, function)()
@pytest.mark.parametrize(
"values, categories",
[
(list("abc"), list("abc")),
(list("abc"), list("cba")),
(list("abc") + [np.nan], list("cba")),
([1, 2, 3], [3, 2, 1]),
([1, 2, 3, np.nan], [3, 2, 1]),
],
)
@pytest.mark.parametrize("function", ["min", "max"])
def test_min_max_ordered(self, values, categories, function):
# GH 25303
cat = Series(Categorical(values, categories=categories, ordered=True))
result = getattr(cat, function)(skipna=True)
expected = categories[0] if function == "min" else categories[2]
assert result == expected
@pytest.mark.parametrize("function", ["min", "max"])
@pytest.mark.parametrize("skipna", [True, False])
def test_min_max_ordered_with_nan_only(self, function, skipna):
# https://github.com/pandas-dev/pandas/issues/33450
cat = Series(Categorical([np.nan], categories=[1, 2], ordered=True))
result = getattr(cat, function)(skipna=skipna)
assert result is np.nan
@pytest.mark.parametrize("function", ["min", "max"])
@pytest.mark.parametrize("skipna", [True, False])
def test_min_max_skipna(self, function, skipna):
cat = Series(
Categorical(["a", "b", np.nan, "a"], categories=["b", "a"], ordered=True)
)
result = getattr(cat, function)(skipna=skipna)
if skipna is True:
expected = "b" if function == "min" else "a"
assert result == expected
else:
assert result is np.nan
class TestSeriesMode:
# Note: the name TestSeriesMode indicates these tests
# were moved from a series-specific test file, _not_ that these tests are
# intended long-term to be series-specific
@pytest.mark.parametrize(
"dropna, expected",
[(True, Series([], dtype=np.float64)), (False, Series([], dtype=np.float64))],
)
def test_mode_empty(self, dropna, expected):
s = Series([], dtype=np.float64)
result = s.mode(dropna)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dropna, data, expected",
[
(True, [1, 1, 1, 2], [1]),
(True, [1, 1, 1, 2, 3, 3, 3], [1, 3]),
(False, [1, 1, 1, 2], [1]),
(False, [1, 1, 1, 2, 3, 3, 3], [1, 3]),
],
)
@pytest.mark.parametrize(
"dt", list(np.typecodes["AllInteger"] + np.typecodes["Float"])
)
def test_mode_numerical(self, dropna, data, expected, dt):
s = Series(data, dtype=dt)
result = s.mode(dropna)
expected = Series(expected, dtype=dt)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("dropna, expected", [(True, [1.0]), (False, [1, np.nan])])
def test_mode_numerical_nan(self, dropna, expected):
s = Series([1, 1, 2, np.nan, np.nan])
result = s.mode(dropna)
expected = Series(expected)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dropna, expected1, expected2, expected3",
[(True, ["b"], ["bar"], ["nan"]), (False, ["b"], [np.nan], ["nan"])],
)
def test_mode_str_obj(self, dropna, expected1, expected2, expected3):
# Test string and object types.
data = ["a"] * 2 + ["b"] * 3
s = Series(data, dtype="c")
result = s.mode(dropna)
expected1 = Series(expected1, dtype="c")
tm.assert_series_equal(result, expected1)
data = ["foo", "bar", "bar", np.nan, np.nan, np.nan]
s = Series(data, dtype=object)
result = s.mode(dropna)
expected2 = Series(expected2, dtype=object)
tm.assert_series_equal(result, expected2)
data = ["foo", "bar", "bar", np.nan, np.nan, np.nan]
s = Series(data, dtype=object).astype(str)
result = s.mode(dropna)
expected3 = Series(expected3, dtype=str)
tm.assert_series_equal(result, expected3)
@pytest.mark.parametrize(
"dropna, expected1, expected2",
[(True, ["foo"], ["foo"]), (False, ["foo"], [np.nan])],
)
def test_mode_mixeddtype(self, dropna, expected1, expected2):
s = Series([1, "foo", "foo"])
result = s.mode(dropna)
expected = Series(expected1)
tm.assert_series_equal(result, expected)
s = Series([1, "foo", "foo", np.nan, np.nan, np.nan])
result = s.mode(dropna)
expected = Series(expected2, dtype=object)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dropna, expected1, expected2",
[
(
True,
["1900-05-03", "2011-01-03", "2013-01-02"],
["2011-01-03", "2013-01-02"],
),
(False, [np.nan], [np.nan, "2011-01-03", "2013-01-02"]),
],
)
def test_mode_datetime(self, dropna, expected1, expected2):
s = Series(
["2011-01-03", "2013-01-02", "1900-05-03", "nan", "nan"], dtype="M8[ns]"
)
result = s.mode(dropna)
expected1 = Series(expected1, dtype="M8[ns]")
tm.assert_series_equal(result, expected1)
s = Series(
[
"2011-01-03",
"2013-01-02",
"1900-05-03",
"2011-01-03",
"2013-01-02",
"nan",
"nan",
],
dtype="M8[ns]",
)
result = s.mode(dropna)
expected2 = Series(expected2, dtype="M8[ns]")
tm.assert_series_equal(result, expected2)
@pytest.mark.parametrize(
"dropna, expected1, expected2",
[
(True, ["-1 days", "0 days", "1 days"], ["2 min", "1 day"]),
(False, [np.nan], [np.nan, "2 min", "1 day"]),
],
)
def test_mode_timedelta(self, dropna, expected1, expected2):
# gh-5986: Test timedelta types.
s = Series(
["1 days", "-1 days", "0 days", "nan", "nan"], dtype="timedelta64[ns]"
)
result = s.mode(dropna)
expected1 = Series(expected1, dtype="timedelta64[ns]")
tm.assert_series_equal(result, expected1)
s = Series(
[
"1 day",
"1 day",
"-1 day",
"-1 day 2 min",
"2 min",
"2 min",
"nan",
"nan",
],
dtype="timedelta64[ns]",
)
result = s.mode(dropna)
expected2 = Series(expected2, dtype="timedelta64[ns]")
tm.assert_series_equal(result, expected2)
@pytest.mark.parametrize(
"dropna, expected1, expected2, expected3",
[
(
True,
Categorical([1, 2], categories=[1, 2]),
Categorical(["a"], categories=[1, "a"]),
Categorical([3, 1], categories=[3, 2, 1], ordered=True),
),
(
False,
Categorical([np.nan], categories=[1, 2]),
Categorical([np.nan, "a"], categories=[1, "a"]),
Categorical([np.nan, 3, 1], categories=[3, 2, 1], ordered=True),
),
],
)
def test_mode_category(self, dropna, expected1, expected2, expected3):
s = Series(Categorical([1, 2, np.nan, np.nan]))
result = s.mode(dropna)
expected1 = Series(expected1, dtype="category")
tm.assert_series_equal(result, expected1)
s = Series(Categorical([1, "a", "a", np.nan, np.nan]))
result = s.mode(dropna)
expected2 = Series(expected2, dtype="category")
tm.assert_series_equal(result, expected2)
s = Series(
Categorical(
[1, 1, 2, 3, 3, np.nan, np.nan], categories=[3, 2, 1], ordered=True
)
)
result = s.mode(dropna)
expected3 = Series(expected3, dtype="category")
tm.assert_series_equal(result, expected3)
@pytest.mark.parametrize(
"dropna, expected1, expected2",
[(True, [2**63], [1, 2**63]), (False, [2**63], [1, 2**63])],
)
def test_mode_intoverflow(self, dropna, expected1, expected2):
# Test for uint64 overflow.
s = Series([1, 2**63, 2**63], dtype=np.uint64)
result = s.mode(dropna)
expected1 = Series(expected1, dtype=np.uint64)
tm.assert_series_equal(result, expected1)
s = Series([1, 2**63], dtype=np.uint64)
result = s.mode(dropna)
expected2 = Series(expected2, dtype=np.uint64)
tm.assert_series_equal(result, expected2)
def test_mode_sortwarning(self):
# Check for the warning that is raised when the mode
# results cannot be sorted
expected = Series(["foo", np.nan])
s = Series([1, "foo", "foo", np.nan, np.nan])
with tm.assert_produces_warning(UserWarning):
result = s.mode(dropna=False)
result = result.sort_values().reset_index(drop=True)
tm.assert_series_equal(result, expected)
def test_mode_boolean_with_na(self):
# GH#42107
ser = Series([True, False, True, pd.NA], dtype="boolean")
result = ser.mode()
expected = Series({0: True}, dtype="boolean")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"array,expected,dtype",
[
(
[0, 1j, 1, 1, 1 + 1j, 1 + 2j],
Series([1], dtype=np.complex128),
np.complex128,
),
(
[0, 1j, 1, 1, 1 + 1j, 1 + 2j],
Series([1], dtype=np.complex64),
np.complex64,
),
(
[1 + 1j, 2j, 1 + 1j],
Series([1 + 1j], dtype=np.complex128),
np.complex128,
),
],
)
def test_single_mode_value_complex(self, array, expected, dtype):
result = Series(array, dtype=dtype).mode()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"array,expected,dtype",
[
(
# no modes
[0, 1j, 1, 1 + 1j, 1 + 2j],
Series([0j, 1j, 1 + 0j, 1 + 1j, 1 + 2j], dtype=np.complex128),
np.complex128,
),
(
[1 + 1j, 2j, 1 + 1j, 2j, 3],
Series([2j, 1 + 1j], dtype=np.complex64),
np.complex64,
),
],
)
def test_multimode_complex(self, array, expected, dtype):
# GH 17927
# mode tries to sort multimodal series.
# Complex numbers are sorted by their magnitude
result = Series(array, dtype=dtype).mode()
tm.assert_series_equal(result, expected)