844 lines
30 KiB
Python
844 lines
30 KiB
Python
|
""" Test cases for Series.plot """
|
||
|
from datetime import datetime
|
||
|
from itertools import chain
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas.util._test_decorators as td
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
date_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
from pandas.tests.plotting.common import (
|
||
|
TestPlotBase,
|
||
|
_check_plot_works,
|
||
|
)
|
||
|
|
||
|
import pandas.plotting as plotting
|
||
|
|
||
|
try:
|
||
|
from pandas.plotting._matplotlib.compat import mpl_ge_3_6_0
|
||
|
except ImportError:
|
||
|
mpl_ge_3_6_0 = lambda: True
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def ts():
|
||
|
return tm.makeTimeSeries(name="ts")
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def series():
|
||
|
return tm.makeStringSeries(name="series")
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def iseries():
|
||
|
return tm.makePeriodSeries(name="iseries")
|
||
|
|
||
|
|
||
|
@td.skip_if_no_mpl
|
||
|
class TestSeriesPlots(TestPlotBase):
|
||
|
@pytest.mark.slow
|
||
|
def test_plot(self, ts):
|
||
|
_check_plot_works(ts.plot, label="foo")
|
||
|
_check_plot_works(ts.plot, use_index=False)
|
||
|
axes = _check_plot_works(ts.plot, rot=0)
|
||
|
self._check_ticks_props(axes, xrot=0)
|
||
|
|
||
|
ax = _check_plot_works(ts.plot, style=".", logy=True)
|
||
|
self._check_ax_scales(ax, yaxis="log")
|
||
|
|
||
|
ax = _check_plot_works(ts.plot, style=".", logx=True)
|
||
|
self._check_ax_scales(ax, xaxis="log")
|
||
|
|
||
|
ax = _check_plot_works(ts.plot, style=".", loglog=True)
|
||
|
self._check_ax_scales(ax, xaxis="log", yaxis="log")
|
||
|
|
||
|
_check_plot_works(ts[:10].plot.bar)
|
||
|
_check_plot_works(ts.plot.area, stacked=False)
|
||
|
|
||
|
def test_plot_iseries(self, iseries):
|
||
|
_check_plot_works(iseries.plot)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"kind",
|
||
|
[
|
||
|
"line",
|
||
|
"bar",
|
||
|
"barh",
|
||
|
pytest.param("kde", marks=td.skip_if_no_scipy),
|
||
|
"hist",
|
||
|
"box",
|
||
|
],
|
||
|
)
|
||
|
def test_plot_series_kinds(self, series, kind):
|
||
|
_check_plot_works(series[:5].plot, kind=kind)
|
||
|
|
||
|
def test_plot_series_barh(self, series):
|
||
|
_check_plot_works(series[:10].plot.barh)
|
||
|
|
||
|
def test_plot_series_bar_ax(self):
|
||
|
ax = _check_plot_works(Series(np.random.randn(10)).plot.bar, color="black")
|
||
|
self._check_colors([ax.patches[0]], facecolors=["black"])
|
||
|
|
||
|
def test_plot_6951(self, ts):
|
||
|
# GH 6951
|
||
|
ax = _check_plot_works(ts.plot, subplots=True)
|
||
|
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||
|
|
||
|
ax = _check_plot_works(ts.plot, subplots=True, layout=(-1, 1))
|
||
|
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||
|
ax = _check_plot_works(ts.plot, subplots=True, layout=(1, -1))
|
||
|
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||
|
|
||
|
def test_plot_figsize_and_title(self, series):
|
||
|
# figsize and title
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = series.plot(title="Test", figsize=(16, 8), ax=ax)
|
||
|
self._check_text_labels(ax.title, "Test")
|
||
|
self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8))
|
||
|
|
||
|
def test_dont_modify_rcParams(self):
|
||
|
# GH 8242
|
||
|
key = "axes.prop_cycle"
|
||
|
colors = self.plt.rcParams[key]
|
||
|
_, ax = self.plt.subplots()
|
||
|
Series([1, 2, 3]).plot(ax=ax)
|
||
|
assert colors == self.plt.rcParams[key]
|
||
|
|
||
|
def test_ts_line_lim(self, ts):
|
||
|
fig, ax = self.plt.subplots()
|
||
|
ax = ts.plot(ax=ax)
|
||
|
xmin, xmax = ax.get_xlim()
|
||
|
lines = ax.get_lines()
|
||
|
assert xmin <= lines[0].get_data(orig=False)[0][0]
|
||
|
assert xmax >= lines[0].get_data(orig=False)[0][-1]
|
||
|
tm.close()
|
||
|
|
||
|
ax = ts.plot(secondary_y=True, ax=ax)
|
||
|
xmin, xmax = ax.get_xlim()
|
||
|
lines = ax.get_lines()
|
||
|
assert xmin <= lines[0].get_data(orig=False)[0][0]
|
||
|
assert xmax >= lines[0].get_data(orig=False)[0][-1]
|
||
|
|
||
|
def test_ts_area_lim(self, ts):
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = ts.plot.area(stacked=False, ax=ax)
|
||
|
xmin, xmax = ax.get_xlim()
|
||
|
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||
|
assert xmin <= line[0]
|
||
|
assert xmax >= line[-1]
|
||
|
self._check_ticks_props(ax, xrot=0)
|
||
|
tm.close()
|
||
|
|
||
|
# GH 7471
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = ts.plot.area(stacked=False, x_compat=True, ax=ax)
|
||
|
xmin, xmax = ax.get_xlim()
|
||
|
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||
|
assert xmin <= line[0]
|
||
|
assert xmax >= line[-1]
|
||
|
self._check_ticks_props(ax, xrot=30)
|
||
|
tm.close()
|
||
|
|
||
|
tz_ts = ts.copy()
|
||
|
tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET")
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax)
|
||
|
xmin, xmax = ax.get_xlim()
|
||
|
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||
|
assert xmin <= line[0]
|
||
|
assert xmax >= line[-1]
|
||
|
self._check_ticks_props(ax, xrot=0)
|
||
|
tm.close()
|
||
|
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax)
|
||
|
xmin, xmax = ax.get_xlim()
|
||
|
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||
|
assert xmin <= line[0]
|
||
|
assert xmax >= line[-1]
|
||
|
self._check_ticks_props(ax, xrot=0)
|
||
|
|
||
|
def test_area_sharey_dont_overwrite(self, ts):
|
||
|
# GH37942
|
||
|
fig, (ax1, ax2) = self.plt.subplots(1, 2, sharey=True)
|
||
|
|
||
|
abs(ts).plot(ax=ax1, kind="area")
|
||
|
abs(ts).plot(ax=ax2, kind="area")
|
||
|
|
||
|
assert self.get_y_axis(ax1).joined(ax1, ax2)
|
||
|
assert self.get_y_axis(ax2).joined(ax1, ax2)
|
||
|
|
||
|
def test_label(self):
|
||
|
s = Series([1, 2])
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = s.plot(label="LABEL", legend=True, ax=ax)
|
||
|
self._check_legend_labels(ax, labels=["LABEL"])
|
||
|
self.plt.close()
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = s.plot(legend=True, ax=ax)
|
||
|
self._check_legend_labels(ax, labels=[""])
|
||
|
self.plt.close()
|
||
|
# get name from index
|
||
|
s.name = "NAME"
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = s.plot(legend=True, ax=ax)
|
||
|
self._check_legend_labels(ax, labels=["NAME"])
|
||
|
self.plt.close()
|
||
|
# override the default
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = s.plot(legend=True, label="LABEL", ax=ax)
|
||
|
self._check_legend_labels(ax, labels=["LABEL"])
|
||
|
self.plt.close()
|
||
|
# Add lebel info, but don't draw
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = s.plot(legend=False, label="LABEL", ax=ax)
|
||
|
assert ax.get_legend() is None # Hasn't been drawn
|
||
|
ax.legend() # draw it
|
||
|
self._check_legend_labels(ax, labels=["LABEL"])
|
||
|
|
||
|
def test_boolean(self):
|
||
|
# GH 23719
|
||
|
s = Series([False, False, True])
|
||
|
_check_plot_works(s.plot, include_bool=True)
|
||
|
|
||
|
msg = "no numeric data to plot"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
_check_plot_works(s.plot)
|
||
|
|
||
|
@pytest.mark.parametrize("index", [None, tm.makeDateIndex(k=4)])
|
||
|
def test_line_area_nan_series(self, index):
|
||
|
values = [1, 2, np.nan, 3]
|
||
|
d = Series(values, index=index)
|
||
|
ax = _check_plot_works(d.plot)
|
||
|
masked = ax.lines[0].get_ydata()
|
||
|
# remove nan for comparison purpose
|
||
|
exp = np.array([1, 2, 3], dtype=np.float64)
|
||
|
tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp)
|
||
|
tm.assert_numpy_array_equal(masked.mask, np.array([False, False, True, False]))
|
||
|
|
||
|
expected = np.array([1, 2, 0, 3], dtype=np.float64)
|
||
|
ax = _check_plot_works(d.plot, stacked=True)
|
||
|
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||
|
ax = _check_plot_works(d.plot.area)
|
||
|
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||
|
ax = _check_plot_works(d.plot.area, stacked=False)
|
||
|
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||
|
|
||
|
def test_line_use_index_false(self):
|
||
|
s = Series([1, 2, 3], index=["a", "b", "c"])
|
||
|
s.index.name = "The Index"
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = s.plot(use_index=False, ax=ax)
|
||
|
label = ax.get_xlabel()
|
||
|
assert label == ""
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax2 = s.plot.bar(use_index=False, ax=ax)
|
||
|
label2 = ax2.get_xlabel()
|
||
|
assert label2 == ""
|
||
|
|
||
|
def test_bar_log(self):
|
||
|
expected = np.array([1e-1, 1e0, 1e1, 1e2, 1e3, 1e4])
|
||
|
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = Series([200, 500]).plot.bar(log=True, ax=ax)
|
||
|
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
|
||
|
tm.close()
|
||
|
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = Series([200, 500]).plot.barh(log=True, ax=ax)
|
||
|
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
|
||
|
tm.close()
|
||
|
|
||
|
# GH 9905
|
||
|
expected = np.array([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1])
|
||
|
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind="bar", ax=ax)
|
||
|
ymin = 0.0007943282347242822
|
||
|
ymax = 0.12589254117941673
|
||
|
res = ax.get_ylim()
|
||
|
tm.assert_almost_equal(res[0], ymin)
|
||
|
tm.assert_almost_equal(res[1], ymax)
|
||
|
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
|
||
|
tm.close()
|
||
|
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind="barh", ax=ax)
|
||
|
res = ax.get_xlim()
|
||
|
tm.assert_almost_equal(res[0], ymin)
|
||
|
tm.assert_almost_equal(res[1], ymax)
|
||
|
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
|
||
|
|
||
|
def test_bar_ignore_index(self):
|
||
|
df = Series([1, 2, 3, 4], index=["a", "b", "c", "d"])
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = df.plot.bar(use_index=False, ax=ax)
|
||
|
self._check_text_labels(ax.get_xticklabels(), ["0", "1", "2", "3"])
|
||
|
|
||
|
def test_bar_user_colors(self):
|
||
|
s = Series([1, 2, 3, 4])
|
||
|
ax = s.plot.bar(color=["red", "blue", "blue", "red"])
|
||
|
result = [p.get_facecolor() for p in ax.patches]
|
||
|
expected = [
|
||
|
(1.0, 0.0, 0.0, 1.0),
|
||
|
(0.0, 0.0, 1.0, 1.0),
|
||
|
(0.0, 0.0, 1.0, 1.0),
|
||
|
(1.0, 0.0, 0.0, 1.0),
|
||
|
]
|
||
|
assert result == expected
|
||
|
|
||
|
def test_rotation(self):
|
||
|
df = DataFrame(np.random.randn(5, 5))
|
||
|
# Default rot 0
|
||
|
_, ax = self.plt.subplots()
|
||
|
axes = df.plot(ax=ax)
|
||
|
self._check_ticks_props(axes, xrot=0)
|
||
|
|
||
|
_, ax = self.plt.subplots()
|
||
|
axes = df.plot(rot=30, ax=ax)
|
||
|
self._check_ticks_props(axes, xrot=30)
|
||
|
|
||
|
def test_irregular_datetime(self):
|
||
|
from pandas.plotting._matplotlib.converter import DatetimeConverter
|
||
|
|
||
|
rng = date_range("1/1/2000", "3/1/2000")
|
||
|
rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]]
|
||
|
ser = Series(np.random.randn(len(rng)), rng)
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = ser.plot(ax=ax)
|
||
|
xp = DatetimeConverter.convert(datetime(1999, 1, 1), "", ax)
|
||
|
ax.set_xlim("1/1/1999", "1/1/2001")
|
||
|
assert xp == ax.get_xlim()[0]
|
||
|
self._check_ticks_props(ax, xrot=30)
|
||
|
|
||
|
def test_unsorted_index_xlim(self):
|
||
|
ser = Series(
|
||
|
[0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0],
|
||
|
index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0],
|
||
|
)
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = ser.plot(ax=ax)
|
||
|
xmin, xmax = ax.get_xlim()
|
||
|
lines = ax.get_lines()
|
||
|
assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0])
|
||
|
assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0])
|
||
|
|
||
|
def test_pie_series(self):
|
||
|
# if sum of values is less than 1.0, pie handle them as rate and draw
|
||
|
# semicircle.
|
||
|
series = Series(
|
||
|
np.random.randint(1, 5), index=["a", "b", "c", "d", "e"], name="YLABEL"
|
||
|
)
|
||
|
ax = _check_plot_works(series.plot.pie)
|
||
|
self._check_text_labels(ax.texts, series.index)
|
||
|
assert ax.get_ylabel() == "YLABEL"
|
||
|
|
||
|
# without wedge labels
|
||
|
ax = _check_plot_works(series.plot.pie, labels=None)
|
||
|
self._check_text_labels(ax.texts, [""] * 5)
|
||
|
|
||
|
# with less colors than elements
|
||
|
color_args = ["r", "g", "b"]
|
||
|
ax = _check_plot_works(series.plot.pie, colors=color_args)
|
||
|
|
||
|
color_expected = ["r", "g", "b", "r", "g"]
|
||
|
self._check_colors(ax.patches, facecolors=color_expected)
|
||
|
|
||
|
# with labels and colors
|
||
|
labels = ["A", "B", "C", "D", "E"]
|
||
|
color_args = ["r", "g", "b", "c", "m"]
|
||
|
ax = _check_plot_works(series.plot.pie, labels=labels, colors=color_args)
|
||
|
self._check_text_labels(ax.texts, labels)
|
||
|
self._check_colors(ax.patches, facecolors=color_args)
|
||
|
|
||
|
# with autopct and fontsize
|
||
|
ax = _check_plot_works(
|
||
|
series.plot.pie, colors=color_args, autopct="%.2f", fontsize=7
|
||
|
)
|
||
|
pcts = [f"{s*100:.2f}" for s in series.values / series.sum()]
|
||
|
expected_texts = list(chain.from_iterable(zip(series.index, pcts)))
|
||
|
self._check_text_labels(ax.texts, expected_texts)
|
||
|
for t in ax.texts:
|
||
|
assert t.get_fontsize() == 7
|
||
|
|
||
|
# includes negative value
|
||
|
series = Series([1, 2, 0, 4, -1], index=["a", "b", "c", "d", "e"])
|
||
|
with pytest.raises(ValueError, match="pie plot doesn't allow negative values"):
|
||
|
series.plot.pie()
|
||
|
|
||
|
# includes nan
|
||
|
series = Series([1, 2, np.nan, 4], index=["a", "b", "c", "d"], name="YLABEL")
|
||
|
ax = _check_plot_works(series.plot.pie)
|
||
|
self._check_text_labels(ax.texts, ["a", "b", "", "d"])
|
||
|
|
||
|
def test_pie_nan(self):
|
||
|
s = Series([1, np.nan, 1, 1])
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = s.plot.pie(legend=True, ax=ax)
|
||
|
expected = ["0", "", "2", "3"]
|
||
|
result = [x.get_text() for x in ax.texts]
|
||
|
assert result == expected
|
||
|
|
||
|
def test_df_series_secondary_legend(self):
|
||
|
# GH 9779
|
||
|
df = DataFrame(np.random.randn(30, 3), columns=list("abc"))
|
||
|
s = Series(np.random.randn(30), name="x")
|
||
|
|
||
|
# primary -> secondary (without passing ax)
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = df.plot(ax=ax)
|
||
|
s.plot(legend=True, secondary_y=True, ax=ax)
|
||
|
# both legends are drawn on left ax
|
||
|
# left and right axis must be visible
|
||
|
self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
|
||
|
assert ax.get_yaxis().get_visible()
|
||
|
assert ax.right_ax.get_yaxis().get_visible()
|
||
|
tm.close()
|
||
|
|
||
|
# primary -> secondary (with passing ax)
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = df.plot(ax=ax)
|
||
|
s.plot(ax=ax, legend=True, secondary_y=True)
|
||
|
# both legends are drawn on left ax
|
||
|
# left and right axis must be visible
|
||
|
self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
|
||
|
assert ax.get_yaxis().get_visible()
|
||
|
assert ax.right_ax.get_yaxis().get_visible()
|
||
|
tm.close()
|
||
|
|
||
|
# secondary -> secondary (without passing ax)
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = df.plot(secondary_y=True, ax=ax)
|
||
|
s.plot(legend=True, secondary_y=True, ax=ax)
|
||
|
# both legends are drawn on left ax
|
||
|
# left axis must be invisible and right axis must be visible
|
||
|
expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
|
||
|
self._check_legend_labels(ax.left_ax, labels=expected)
|
||
|
assert not ax.left_ax.get_yaxis().get_visible()
|
||
|
assert ax.get_yaxis().get_visible()
|
||
|
tm.close()
|
||
|
|
||
|
# secondary -> secondary (with passing ax)
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = df.plot(secondary_y=True, ax=ax)
|
||
|
s.plot(ax=ax, legend=True, secondary_y=True)
|
||
|
# both legends are drawn on left ax
|
||
|
# left axis must be invisible and right axis must be visible
|
||
|
expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
|
||
|
self._check_legend_labels(ax.left_ax, expected)
|
||
|
assert not ax.left_ax.get_yaxis().get_visible()
|
||
|
assert ax.get_yaxis().get_visible()
|
||
|
tm.close()
|
||
|
|
||
|
# secondary -> secondary (with passing ax)
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = df.plot(secondary_y=True, mark_right=False, ax=ax)
|
||
|
s.plot(ax=ax, legend=True, secondary_y=True)
|
||
|
# both legends are drawn on left ax
|
||
|
# left axis must be invisible and right axis must be visible
|
||
|
expected = ["a", "b", "c", "x (right)"]
|
||
|
self._check_legend_labels(ax.left_ax, expected)
|
||
|
assert not ax.left_ax.get_yaxis().get_visible()
|
||
|
assert ax.get_yaxis().get_visible()
|
||
|
tm.close()
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"input_logy, expected_scale", [(True, "log"), ("sym", "symlog")]
|
||
|
)
|
||
|
def test_secondary_logy(self, input_logy, expected_scale):
|
||
|
# GH 25545
|
||
|
s1 = Series(np.random.randn(30))
|
||
|
s2 = Series(np.random.randn(30))
|
||
|
|
||
|
# GH 24980
|
||
|
ax1 = s1.plot(logy=input_logy)
|
||
|
ax2 = s2.plot(secondary_y=True, logy=input_logy)
|
||
|
|
||
|
assert ax1.get_yscale() == expected_scale
|
||
|
assert ax2.get_yscale() == expected_scale
|
||
|
|
||
|
def test_plot_fails_with_dupe_color_and_style(self):
|
||
|
x = Series(np.random.randn(2))
|
||
|
_, ax = self.plt.subplots()
|
||
|
msg = (
|
||
|
"Cannot pass 'style' string with a color symbol and 'color' keyword "
|
||
|
"argument. Please use one or the other or pass 'style' without a color "
|
||
|
"symbol"
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
x.plot(style="k--", color="k", ax=ax)
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_kde_kwargs(self, ts):
|
||
|
sample_points = np.linspace(-100, 100, 20)
|
||
|
_check_plot_works(ts.plot.kde, bw_method="scott", ind=20)
|
||
|
_check_plot_works(ts.plot.kde, bw_method=None, ind=20)
|
||
|
_check_plot_works(ts.plot.kde, bw_method=None, ind=np.int_(20))
|
||
|
_check_plot_works(ts.plot.kde, bw_method=0.5, ind=sample_points)
|
||
|
_check_plot_works(ts.plot.density, bw_method=0.5, ind=sample_points)
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = ts.plot.kde(logy=True, bw_method=0.5, ind=sample_points, ax=ax)
|
||
|
self._check_ax_scales(ax, yaxis="log")
|
||
|
self._check_text_labels(ax.yaxis.get_label(), "Density")
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_kde_missing_vals(self):
|
||
|
s = Series(np.random.uniform(size=50))
|
||
|
s[0] = np.nan
|
||
|
axes = _check_plot_works(s.plot.kde)
|
||
|
|
||
|
# gh-14821: check if the values have any missing values
|
||
|
assert any(~np.isnan(axes.lines[0].get_xdata()))
|
||
|
|
||
|
@pytest.mark.xfail(mpl_ge_3_6_0(), reason="Api changed")
|
||
|
def test_boxplot_series(self, ts):
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = ts.plot.box(logy=True, ax=ax)
|
||
|
self._check_ax_scales(ax, yaxis="log")
|
||
|
xlabels = ax.get_xticklabels()
|
||
|
self._check_text_labels(xlabels, [ts.name])
|
||
|
ylabels = ax.get_yticklabels()
|
||
|
self._check_text_labels(ylabels, [""] * len(ylabels))
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
@pytest.mark.parametrize(
|
||
|
"kind",
|
||
|
plotting.PlotAccessor._common_kinds + plotting.PlotAccessor._series_kinds,
|
||
|
)
|
||
|
def test_kind_both_ways(self, kind):
|
||
|
s = Series(range(3))
|
||
|
_, ax = self.plt.subplots()
|
||
|
s.plot(kind=kind, ax=ax)
|
||
|
self.plt.close()
|
||
|
_, ax = self.plt.subplots()
|
||
|
getattr(s.plot, kind)()
|
||
|
self.plt.close()
|
||
|
|
||
|
@pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds)
|
||
|
def test_invalid_plot_data(self, kind):
|
||
|
s = Series(list("abcd"))
|
||
|
_, ax = self.plt.subplots()
|
||
|
msg = "no numeric data to plot"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s.plot(kind=kind, ax=ax)
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
@pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds)
|
||
|
def test_valid_object_plot(self, kind):
|
||
|
s = Series(range(10), dtype=object)
|
||
|
_check_plot_works(s.plot, kind=kind)
|
||
|
|
||
|
@pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds)
|
||
|
def test_partially_invalid_plot_data(self, kind):
|
||
|
s = Series(["a", "b", 1.0, 2])
|
||
|
_, ax = self.plt.subplots()
|
||
|
msg = "no numeric data to plot"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s.plot(kind=kind, ax=ax)
|
||
|
|
||
|
def test_invalid_kind(self):
|
||
|
s = Series([1, 2])
|
||
|
with pytest.raises(ValueError, match="invalid_kind is not a valid plot kind"):
|
||
|
s.plot(kind="invalid_kind")
|
||
|
|
||
|
def test_dup_datetime_index_plot(self):
|
||
|
dr1 = date_range("1/1/2009", periods=4)
|
||
|
dr2 = date_range("1/2/2009", periods=4)
|
||
|
index = dr1.append(dr2)
|
||
|
values = np.random.randn(index.size)
|
||
|
s = Series(values, index=index)
|
||
|
_check_plot_works(s.plot)
|
||
|
|
||
|
def test_errorbar_asymmetrical(self):
|
||
|
# GH9536
|
||
|
s = Series(np.arange(10), name="x")
|
||
|
err = np.random.rand(2, 10)
|
||
|
|
||
|
ax = s.plot(yerr=err, xerr=err)
|
||
|
|
||
|
result = np.vstack([i.vertices[:, 1] for i in ax.collections[1].get_paths()])
|
||
|
expected = (err.T * np.array([-1, 1])) + s.to_numpy().reshape(-1, 1)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
msg = (
|
||
|
"Asymmetrical error bars should be provided "
|
||
|
f"with the shape \\(2, {len(s)}\\)"
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
s.plot(yerr=np.random.rand(2, 11))
|
||
|
|
||
|
tm.close()
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_errorbar_plot(self):
|
||
|
|
||
|
s = Series(np.arange(10), name="x")
|
||
|
s_err = np.abs(np.random.randn(10))
|
||
|
d_err = DataFrame(
|
||
|
np.abs(np.random.randn(10, 2)), index=s.index, columns=["x", "y"]
|
||
|
)
|
||
|
# test line and bar plots
|
||
|
kinds = ["line", "bar"]
|
||
|
for kind in kinds:
|
||
|
ax = _check_plot_works(s.plot, yerr=Series(s_err), kind=kind)
|
||
|
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||
|
ax = _check_plot_works(s.plot, yerr=s_err, kind=kind)
|
||
|
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||
|
ax = _check_plot_works(s.plot, yerr=s_err.tolist(), kind=kind)
|
||
|
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||
|
ax = _check_plot_works(s.plot, yerr=d_err, kind=kind)
|
||
|
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||
|
ax = _check_plot_works(s.plot, xerr=0.2, yerr=0.2, kind=kind)
|
||
|
self._check_has_errorbars(ax, xerr=1, yerr=1)
|
||
|
|
||
|
ax = _check_plot_works(s.plot, xerr=s_err)
|
||
|
self._check_has_errorbars(ax, xerr=1, yerr=0)
|
||
|
|
||
|
# test time series plotting
|
||
|
ix = date_range("1/1/2000", "1/1/2001", freq="M")
|
||
|
ts = Series(np.arange(12), index=ix, name="x")
|
||
|
ts_err = Series(np.abs(np.random.randn(12)), index=ix)
|
||
|
td_err = DataFrame(np.abs(np.random.randn(12, 2)), index=ix, columns=["x", "y"])
|
||
|
|
||
|
ax = _check_plot_works(ts.plot, yerr=ts_err)
|
||
|
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||
|
ax = _check_plot_works(ts.plot, yerr=td_err)
|
||
|
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||
|
|
||
|
# check incorrect lengths and types
|
||
|
with tm.external_error_raised(ValueError):
|
||
|
s.plot(yerr=np.arange(11))
|
||
|
|
||
|
s_err = ["zzz"] * 10
|
||
|
with tm.external_error_raised(TypeError):
|
||
|
s.plot(yerr=s_err)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_table(self, series):
|
||
|
_check_plot_works(series.plot, table=True)
|
||
|
_check_plot_works(series.plot, table=series)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_series_grid_settings(self):
|
||
|
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
|
||
|
self._check_grid_settings(
|
||
|
Series([1, 2, 3]),
|
||
|
plotting.PlotAccessor._series_kinds + plotting.PlotAccessor._common_kinds,
|
||
|
)
|
||
|
|
||
|
@pytest.mark.parametrize("c", ["r", "red", "green", "#FF0000"])
|
||
|
def test_standard_colors(self, c):
|
||
|
from pandas.plotting._matplotlib.style import get_standard_colors
|
||
|
|
||
|
result = get_standard_colors(1, color=c)
|
||
|
assert result == [c]
|
||
|
|
||
|
result = get_standard_colors(1, color=[c])
|
||
|
assert result == [c]
|
||
|
|
||
|
result = get_standard_colors(3, color=c)
|
||
|
assert result == [c] * 3
|
||
|
|
||
|
result = get_standard_colors(3, color=[c])
|
||
|
assert result == [c] * 3
|
||
|
|
||
|
def test_standard_colors_all(self):
|
||
|
import matplotlib.colors as colors
|
||
|
|
||
|
from pandas.plotting._matplotlib.style import get_standard_colors
|
||
|
|
||
|
# multiple colors like mediumaquamarine
|
||
|
for c in colors.cnames:
|
||
|
result = get_standard_colors(num_colors=1, color=c)
|
||
|
assert result == [c]
|
||
|
|
||
|
result = get_standard_colors(num_colors=1, color=[c])
|
||
|
assert result == [c]
|
||
|
|
||
|
result = get_standard_colors(num_colors=3, color=c)
|
||
|
assert result == [c] * 3
|
||
|
|
||
|
result = get_standard_colors(num_colors=3, color=[c])
|
||
|
assert result == [c] * 3
|
||
|
|
||
|
# single letter colors like k
|
||
|
for c in colors.ColorConverter.colors:
|
||
|
result = get_standard_colors(num_colors=1, color=c)
|
||
|
assert result == [c]
|
||
|
|
||
|
result = get_standard_colors(num_colors=1, color=[c])
|
||
|
assert result == [c]
|
||
|
|
||
|
result = get_standard_colors(num_colors=3, color=c)
|
||
|
assert result == [c] * 3
|
||
|
|
||
|
result = get_standard_colors(num_colors=3, color=[c])
|
||
|
assert result == [c] * 3
|
||
|
|
||
|
def test_series_plot_color_kwargs(self):
|
||
|
# GH1890
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = Series(np.arange(12) + 1).plot(color="green", ax=ax)
|
||
|
self._check_colors(ax.get_lines(), linecolors=["green"])
|
||
|
|
||
|
def test_time_series_plot_color_kwargs(self):
|
||
|
# #1890
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = Series(np.arange(12) + 1, index=date_range("1/1/2000", periods=12)).plot(
|
||
|
color="green", ax=ax
|
||
|
)
|
||
|
self._check_colors(ax.get_lines(), linecolors=["green"])
|
||
|
|
||
|
def test_time_series_plot_color_with_empty_kwargs(self):
|
||
|
import matplotlib as mpl
|
||
|
|
||
|
def_colors = self._unpack_cycler(mpl.rcParams)
|
||
|
index = date_range("1/1/2000", periods=12)
|
||
|
s = Series(np.arange(1, 13), index=index)
|
||
|
|
||
|
ncolors = 3
|
||
|
|
||
|
_, ax = self.plt.subplots()
|
||
|
for i in range(ncolors):
|
||
|
ax = s.plot(ax=ax)
|
||
|
self._check_colors(ax.get_lines(), linecolors=def_colors[:ncolors])
|
||
|
|
||
|
def test_xticklabels(self):
|
||
|
# GH11529
|
||
|
s = Series(np.arange(10), index=[f"P{i:02d}" for i in range(10)])
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = s.plot(xticks=[0, 3, 5, 9], ax=ax)
|
||
|
exp = [f"P{i:02d}" for i in [0, 3, 5, 9]]
|
||
|
self._check_text_labels(ax.get_xticklabels(), exp)
|
||
|
|
||
|
def test_xtick_barPlot(self):
|
||
|
# GH28172
|
||
|
s = Series(range(10), index=[f"P{i:02d}" for i in range(10)])
|
||
|
ax = s.plot.bar(xticks=range(0, 11, 2))
|
||
|
exp = np.array(list(range(0, 11, 2)))
|
||
|
tm.assert_numpy_array_equal(exp, ax.get_xticks())
|
||
|
|
||
|
def test_custom_business_day_freq(self):
|
||
|
# GH7222
|
||
|
from pandas.tseries.offsets import CustomBusinessDay
|
||
|
|
||
|
s = Series(
|
||
|
range(100, 121),
|
||
|
index=pd.bdate_range(
|
||
|
start="2014-05-01",
|
||
|
end="2014-06-01",
|
||
|
freq=CustomBusinessDay(holidays=["2014-05-26"]),
|
||
|
),
|
||
|
)
|
||
|
|
||
|
_check_plot_works(s.plot)
|
||
|
|
||
|
@pytest.mark.xfail(reason="GH#24426")
|
||
|
def test_plot_accessor_updates_on_inplace(self):
|
||
|
ser = Series([1, 2, 3, 4])
|
||
|
_, ax = self.plt.subplots()
|
||
|
ax = ser.plot(ax=ax)
|
||
|
before = ax.xaxis.get_ticklocs()
|
||
|
|
||
|
ser.drop([0, 1], inplace=True)
|
||
|
_, ax = self.plt.subplots()
|
||
|
after = ax.xaxis.get_ticklocs()
|
||
|
tm.assert_numpy_array_equal(before, after)
|
||
|
|
||
|
@pytest.mark.parametrize("kind", ["line", "area"])
|
||
|
def test_plot_xlim_for_series(self, kind):
|
||
|
# test if xlim is also correctly plotted in Series for line and area
|
||
|
# GH 27686
|
||
|
s = Series([2, 3])
|
||
|
_, ax = self.plt.subplots()
|
||
|
s.plot(kind=kind, ax=ax)
|
||
|
xlims = ax.get_xlim()
|
||
|
|
||
|
assert xlims[0] < 0
|
||
|
assert xlims[1] > 1
|
||
|
|
||
|
def test_plot_no_rows(self):
|
||
|
# GH 27758
|
||
|
df = Series(dtype=int)
|
||
|
assert df.empty
|
||
|
ax = df.plot()
|
||
|
assert len(ax.get_lines()) == 1
|
||
|
line = ax.get_lines()[0]
|
||
|
assert len(line.get_xdata()) == 0
|
||
|
assert len(line.get_ydata()) == 0
|
||
|
|
||
|
def test_plot_no_numeric_data(self):
|
||
|
df = Series(["a", "b", "c"])
|
||
|
with pytest.raises(TypeError, match="no numeric data to plot"):
|
||
|
df.plot()
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"data, index",
|
||
|
[
|
||
|
([1, 2, 3, 4], [3, 2, 1, 0]),
|
||
|
([10, 50, 20, 30], [1910, 1920, 1980, 1950]),
|
||
|
],
|
||
|
)
|
||
|
def test_plot_order(self, data, index):
|
||
|
# GH38865 Verify plot order of a Series
|
||
|
ser = Series(data=data, index=index)
|
||
|
ax = ser.plot(kind="bar")
|
||
|
|
||
|
expected = ser.tolist()
|
||
|
result = [
|
||
|
patch.get_bbox().ymax
|
||
|
for patch in sorted(ax.patches, key=lambda patch: patch.get_bbox().xmax)
|
||
|
]
|
||
|
assert expected == result
|
||
|
|
||
|
def test_style_single_ok(self):
|
||
|
s = Series([1, 2])
|
||
|
ax = s.plot(style="s", color="C3")
|
||
|
assert ax.lines[0].get_color() == "C3"
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"index_name, old_label, new_label",
|
||
|
[(None, "", "new"), ("old", "old", "new"), (None, "", "")],
|
||
|
)
|
||
|
@pytest.mark.parametrize("kind", ["line", "area", "bar", "barh"])
|
||
|
def test_xlabel_ylabel_series(self, kind, index_name, old_label, new_label):
|
||
|
# GH 9093
|
||
|
ser = Series([1, 2, 3, 4])
|
||
|
ser.index.name = index_name
|
||
|
|
||
|
# default is the ylabel is not shown and xlabel is index name (reverse for barh)
|
||
|
ax = ser.plot(kind=kind)
|
||
|
if kind == "barh":
|
||
|
assert ax.get_xlabel() == ""
|
||
|
assert ax.get_ylabel() == old_label
|
||
|
else:
|
||
|
assert ax.get_ylabel() == ""
|
||
|
assert ax.get_xlabel() == old_label
|
||
|
|
||
|
# old xlabel will be overridden and assigned ylabel will be used as ylabel
|
||
|
ax = ser.plot(kind=kind, ylabel=new_label, xlabel=new_label)
|
||
|
assert ax.get_ylabel() == new_label
|
||
|
assert ax.get_xlabel() == new_label
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"index",
|
||
|
[
|
||
|
pd.timedelta_range(start=0, periods=2, freq="D"),
|
||
|
[pd.Timedelta(days=1), pd.Timedelta(days=2)],
|
||
|
],
|
||
|
)
|
||
|
def test_timedelta_index(self, index):
|
||
|
# GH37454
|
||
|
xlims = (3, 1)
|
||
|
ax = Series([1, 2], index=index).plot(xlim=(xlims))
|
||
|
assert ax.get_xlim() == (3, 1)
|