aoc-2022/venv/Lib/site-packages/pandas/tests/indexing/test_na_indexing.py

76 lines
2.3 KiB
Python
Raw Normal View History

import pytest
import pandas as pd
import pandas._testing as tm
@pytest.mark.parametrize(
"values, dtype",
[
([], "object"),
([1, 2, 3], "int64"),
([1.0, 2.0, 3.0], "float64"),
(["a", "b", "c"], "object"),
(["a", "b", "c"], "string"),
([1, 2, 3], "datetime64[ns]"),
([1, 2, 3], "datetime64[ns, CET]"),
([1, 2, 3], "timedelta64[ns]"),
(["2000", "2001", "2002"], "Period[D]"),
([1, 0, 3], "Sparse"),
([pd.Interval(0, 1), pd.Interval(1, 2), pd.Interval(3, 4)], "interval"),
],
)
@pytest.mark.parametrize(
"mask", [[True, False, False], [True, True, True], [False, False, False]]
)
@pytest.mark.parametrize("indexer_class", [list, pd.array, pd.Index, pd.Series])
@pytest.mark.parametrize("frame", [True, False])
def test_series_mask_boolean(values, dtype, mask, indexer_class, frame):
# In case len(values) < 3
index = ["a", "b", "c"][: len(values)]
mask = mask[: len(values)]
obj = pd.Series(values, dtype=dtype, index=index)
if frame:
if len(values) == 0:
# Otherwise obj is an empty DataFrame with shape (0, 1)
obj = pd.DataFrame(dtype=dtype)
else:
obj = obj.to_frame()
if indexer_class is pd.array:
mask = pd.array(mask, dtype="boolean")
elif indexer_class is pd.Series:
mask = pd.Series(mask, index=obj.index, dtype="boolean")
else:
mask = indexer_class(mask)
expected = obj[mask]
result = obj[mask]
tm.assert_equal(result, expected)
if indexer_class is pd.Series:
msg = "iLocation based boolean indexing cannot use an indexable as a mask"
with pytest.raises(ValueError, match=msg):
result = obj.iloc[mask]
tm.assert_equal(result, expected)
else:
result = obj.iloc[mask]
tm.assert_equal(result, expected)
result = obj.loc[mask]
tm.assert_equal(result, expected)
def test_na_treated_as_false(frame_or_series, indexer_sli):
# https://github.com/pandas-dev/pandas/issues/31503
obj = frame_or_series([1, 2, 3])
mask = pd.array([True, False, None], dtype="boolean")
result = indexer_sli(obj)[mask]
expected = indexer_sli(obj)[mask.fillna(False)]
tm.assert_equal(result, expected)