aoc-2022/venv/Lib/site-packages/pandas/tests/frame/methods/test_sample.py

366 lines
13 KiB
Python
Raw Normal View History

import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
Series,
)
import pandas._testing as tm
import pandas.core.common as com
class TestSample:
@pytest.fixture(params=[Series, DataFrame])
def obj(self, request):
klass = request.param
if klass is Series:
arr = np.random.randn(10)
else:
arr = np.random.randn(10, 10)
return klass(arr, dtype=None)
@pytest.mark.parametrize("test", list(range(10)))
def test_sample(self, test, obj):
# Fixes issue: 2419
# Check behavior of random_state argument
# Check for stability when receives seed or random state -- run 10
# times.
seed = np.random.randint(0, 100)
tm.assert_equal(
obj.sample(n=4, random_state=seed), obj.sample(n=4, random_state=seed)
)
tm.assert_equal(
obj.sample(frac=0.7, random_state=seed),
obj.sample(frac=0.7, random_state=seed),
)
tm.assert_equal(
obj.sample(n=4, random_state=np.random.RandomState(test)),
obj.sample(n=4, random_state=np.random.RandomState(test)),
)
tm.assert_equal(
obj.sample(frac=0.7, random_state=np.random.RandomState(test)),
obj.sample(frac=0.7, random_state=np.random.RandomState(test)),
)
tm.assert_equal(
obj.sample(frac=2, replace=True, random_state=np.random.RandomState(test)),
obj.sample(frac=2, replace=True, random_state=np.random.RandomState(test)),
)
os1, os2 = [], []
for _ in range(2):
np.random.seed(test)
os1.append(obj.sample(n=4))
os2.append(obj.sample(frac=0.7))
tm.assert_equal(*os1)
tm.assert_equal(*os2)
def test_sample_lengths(self, obj):
# Check lengths are right
assert len(obj.sample(n=4) == 4)
assert len(obj.sample(frac=0.34) == 3)
assert len(obj.sample(frac=0.36) == 4)
def test_sample_invalid_random_state(self, obj):
# Check for error when random_state argument invalid.
msg = (
"random_state must be an integer, array-like, a BitGenerator, Generator, "
"a numpy RandomState, or None"
)
with pytest.raises(ValueError, match=msg):
obj.sample(random_state="a_string")
def test_sample_wont_accept_n_and_frac(self, obj):
# Giving both frac and N throws error
msg = "Please enter a value for `frac` OR `n`, not both"
with pytest.raises(ValueError, match=msg):
obj.sample(n=3, frac=0.3)
def test_sample_requires_positive_n_frac(self, obj):
with pytest.raises(
ValueError,
match="A negative number of rows requested. Please provide `n` >= 0",
):
obj.sample(n=-3)
with pytest.raises(
ValueError,
match="A negative number of rows requested. Please provide `frac` >= 0",
):
obj.sample(frac=-0.3)
def test_sample_requires_integer_n(self, obj):
# Make sure float values of `n` give error
with pytest.raises(ValueError, match="Only integers accepted as `n` values"):
obj.sample(n=3.2)
def test_sample_invalid_weight_lengths(self, obj):
# Weight length must be right
msg = "Weights and axis to be sampled must be of same length"
with pytest.raises(ValueError, match=msg):
obj.sample(n=3, weights=[0, 1])
with pytest.raises(ValueError, match=msg):
bad_weights = [0.5] * 11
obj.sample(n=3, weights=bad_weights)
with pytest.raises(ValueError, match="Fewer non-zero entries in p than size"):
bad_weight_series = Series([0, 0, 0.2])
obj.sample(n=4, weights=bad_weight_series)
def test_sample_negative_weights(self, obj):
# Check won't accept negative weights
bad_weights = [-0.1] * 10
msg = "weight vector many not include negative values"
with pytest.raises(ValueError, match=msg):
obj.sample(n=3, weights=bad_weights)
def test_sample_inf_weights(self, obj):
# Check inf and -inf throw errors:
weights_with_inf = [0.1] * 10
weights_with_inf[0] = np.inf
msg = "weight vector may not include `inf` values"
with pytest.raises(ValueError, match=msg):
obj.sample(n=3, weights=weights_with_inf)
weights_with_ninf = [0.1] * 10
weights_with_ninf[0] = -np.inf
with pytest.raises(ValueError, match=msg):
obj.sample(n=3, weights=weights_with_ninf)
def test_sample_zero_weights(self, obj):
# All zeros raises errors
zero_weights = [0] * 10
with pytest.raises(ValueError, match="Invalid weights: weights sum to zero"):
obj.sample(n=3, weights=zero_weights)
def test_sample_missing_weights(self, obj):
# All missing weights
nan_weights = [np.nan] * 10
with pytest.raises(ValueError, match="Invalid weights: weights sum to zero"):
obj.sample(n=3, weights=nan_weights)
def test_sample_none_weights(self, obj):
# Check None are also replaced by zeros.
weights_with_None = [None] * 10
weights_with_None[5] = 0.5
tm.assert_equal(
obj.sample(n=1, axis=0, weights=weights_with_None), obj.iloc[5:6]
)
@pytest.mark.parametrize(
"func_str,arg",
[
("np.array", [2, 3, 1, 0]),
("np.random.MT19937", 3),
("np.random.PCG64", 11),
],
)
def test_sample_random_state(self, func_str, arg, frame_or_series):
# GH#32503
obj = DataFrame({"col1": range(10, 20), "col2": range(20, 30)})
obj = tm.get_obj(obj, frame_or_series)
result = obj.sample(n=3, random_state=eval(func_str)(arg))
expected = obj.sample(n=3, random_state=com.random_state(eval(func_str)(arg)))
tm.assert_equal(result, expected)
def test_sample_generator(self, frame_or_series):
# GH#38100
obj = frame_or_series(np.arange(100))
rng = np.random.default_rng()
# Consecutive calls should advance the seed
result1 = obj.sample(n=50, random_state=rng)
result2 = obj.sample(n=50, random_state=rng)
assert not (result1.index.values == result2.index.values).all()
# Matching generator initialization must give same result
# Consecutive calls should advance the seed
result1 = obj.sample(n=50, random_state=np.random.default_rng(11))
result2 = obj.sample(n=50, random_state=np.random.default_rng(11))
tm.assert_equal(result1, result2)
def test_sample_upsampling_without_replacement(self, frame_or_series):
# GH#27451
obj = DataFrame({"A": list("abc")})
obj = tm.get_obj(obj, frame_or_series)
msg = (
"Replace has to be set to `True` when "
"upsampling the population `frac` > 1."
)
with pytest.raises(ValueError, match=msg):
obj.sample(frac=2, replace=False)
class TestSampleDataFrame:
# Tests which are relevant only for DataFrame, so these are
# as fully parametrized as they can get.
def test_sample(self):
# GH#2419
# additional specific object based tests
# A few dataframe test with degenerate weights.
easy_weight_list = [0] * 10
easy_weight_list[5] = 1
df = DataFrame(
{
"col1": range(10, 20),
"col2": range(20, 30),
"colString": ["a"] * 10,
"easyweights": easy_weight_list,
}
)
sample1 = df.sample(n=1, weights="easyweights")
tm.assert_frame_equal(sample1, df.iloc[5:6])
# Ensure proper error if string given as weight for Series or
# DataFrame with axis = 1.
ser = Series(range(10))
msg = "Strings cannot be passed as weights when sampling from a Series."
with pytest.raises(ValueError, match=msg):
ser.sample(n=3, weights="weight_column")
msg = (
"Strings can only be passed to weights when sampling from rows on a "
"DataFrame"
)
with pytest.raises(ValueError, match=msg):
df.sample(n=1, weights="weight_column", axis=1)
# Check weighting key error
with pytest.raises(
KeyError, match="'String passed to weights not a valid column'"
):
df.sample(n=3, weights="not_a_real_column_name")
# Check that re-normalizes weights that don't sum to one.
weights_less_than_1 = [0] * 10
weights_less_than_1[0] = 0.5
tm.assert_frame_equal(df.sample(n=1, weights=weights_less_than_1), df.iloc[:1])
###
# Test axis argument
###
# Test axis argument
df = DataFrame({"col1": range(10), "col2": ["a"] * 10})
second_column_weight = [0, 1]
tm.assert_frame_equal(
df.sample(n=1, axis=1, weights=second_column_weight), df[["col2"]]
)
# Different axis arg types
tm.assert_frame_equal(
df.sample(n=1, axis="columns", weights=second_column_weight), df[["col2"]]
)
weight = [0] * 10
weight[5] = 0.5
tm.assert_frame_equal(df.sample(n=1, axis="rows", weights=weight), df.iloc[5:6])
tm.assert_frame_equal(
df.sample(n=1, axis="index", weights=weight), df.iloc[5:6]
)
# Check out of range axis values
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.sample(n=1, axis=2)
msg = "No axis named not_a_name for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.sample(n=1, axis="not_a_name")
ser = Series(range(10))
with pytest.raises(ValueError, match="No axis named 1 for object type Series"):
ser.sample(n=1, axis=1)
# Test weight length compared to correct axis
msg = "Weights and axis to be sampled must be of same length"
with pytest.raises(ValueError, match=msg):
df.sample(n=1, axis=1, weights=[0.5] * 10)
def test_sample_axis1(self):
# Check weights with axis = 1
easy_weight_list = [0] * 3
easy_weight_list[2] = 1
df = DataFrame(
{"col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10}
)
sample1 = df.sample(n=1, axis=1, weights=easy_weight_list)
tm.assert_frame_equal(sample1, df[["colString"]])
# Test default axes
tm.assert_frame_equal(
df.sample(n=3, random_state=42), df.sample(n=3, axis=0, random_state=42)
)
def test_sample_aligns_weights_with_frame(self):
# Test that function aligns weights with frame
df = DataFrame({"col1": [5, 6, 7], "col2": ["a", "b", "c"]}, index=[9, 5, 3])
ser = Series([1, 0, 0], index=[3, 5, 9])
tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser))
# Weights have index values to be dropped because not in
# sampled DataFrame
ser2 = Series([0.001, 0, 10000], index=[3, 5, 10])
tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser2))
# Weights have empty values to be filed with zeros
ser3 = Series([0.01, 0], index=[3, 5])
tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser3))
# No overlap in weight and sampled DataFrame indices
ser4 = Series([1, 0], index=[1, 2])
with pytest.raises(ValueError, match="Invalid weights: weights sum to zero"):
df.sample(1, weights=ser4)
def test_sample_is_copy(self):
# GH#27357, GH#30784: ensure the result of sample is an actual copy and
# doesn't track the parent dataframe / doesn't give SettingWithCopy warnings
df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"])
df2 = df.sample(3)
with tm.assert_produces_warning(None):
df2["d"] = 1
def test_sample_does_not_modify_weights(self):
# GH-42843
result = np.array([np.nan, 1, np.nan])
expected = result.copy()
ser = Series([1, 2, 3])
# Test numpy array weights won't be modified in place
ser.sample(weights=result)
tm.assert_numpy_array_equal(result, expected)
# Test DataFrame column won't be modified in place
df = DataFrame({"values": [1, 1, 1], "weights": [1, np.nan, np.nan]})
expected = df["weights"].copy()
df.sample(frac=1.0, replace=True, weights="weights")
result = df["weights"]
tm.assert_series_equal(result, expected)
def test_sample_ignore_index(self):
# GH 38581
df = DataFrame(
{"col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10}
)
result = df.sample(3, ignore_index=True)
expected_index = Index(range(3))
tm.assert_index_equal(result.index, expected_index, exact=True)