219 lines
7.6 KiB
Python
219 lines
7.6 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
date_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestDataFrameRound:
|
||
|
def test_round(self):
|
||
|
# GH#2665
|
||
|
|
||
|
# Test that rounding an empty DataFrame does nothing
|
||
|
df = DataFrame()
|
||
|
tm.assert_frame_equal(df, df.round())
|
||
|
|
||
|
# Here's the test frame we'll be working with
|
||
|
df = DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]})
|
||
|
|
||
|
# Default round to integer (i.e. decimals=0)
|
||
|
expected_rounded = DataFrame({"col1": [1.0, 2.0, 3.0], "col2": [1.0, 2.0, 3.0]})
|
||
|
tm.assert_frame_equal(df.round(), expected_rounded)
|
||
|
|
||
|
# Round with an integer
|
||
|
decimals = 2
|
||
|
expected_rounded = DataFrame(
|
||
|
{"col1": [1.12, 2.12, 3.12], "col2": [1.23, 2.23, 3.23]}
|
||
|
)
|
||
|
tm.assert_frame_equal(df.round(decimals), expected_rounded)
|
||
|
|
||
|
# This should also work with np.round (since np.round dispatches to
|
||
|
# df.round)
|
||
|
tm.assert_frame_equal(np.round(df, decimals), expected_rounded)
|
||
|
|
||
|
# Round with a list
|
||
|
round_list = [1, 2]
|
||
|
msg = "decimals must be an integer, a dict-like or a Series"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(round_list)
|
||
|
|
||
|
# Round with a dictionary
|
||
|
expected_rounded = DataFrame(
|
||
|
{"col1": [1.1, 2.1, 3.1], "col2": [1.23, 2.23, 3.23]}
|
||
|
)
|
||
|
round_dict = {"col1": 1, "col2": 2}
|
||
|
tm.assert_frame_equal(df.round(round_dict), expected_rounded)
|
||
|
|
||
|
# Incomplete dict
|
||
|
expected_partially_rounded = DataFrame(
|
||
|
{"col1": [1.123, 2.123, 3.123], "col2": [1.2, 2.2, 3.2]}
|
||
|
)
|
||
|
partial_round_dict = {"col2": 1}
|
||
|
tm.assert_frame_equal(df.round(partial_round_dict), expected_partially_rounded)
|
||
|
|
||
|
# Dict with unknown elements
|
||
|
wrong_round_dict = {"col3": 2, "col2": 1}
|
||
|
tm.assert_frame_equal(df.round(wrong_round_dict), expected_partially_rounded)
|
||
|
|
||
|
# float input to `decimals`
|
||
|
non_int_round_dict = {"col1": 1, "col2": 0.5}
|
||
|
msg = "Values in decimals must be integers"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(non_int_round_dict)
|
||
|
|
||
|
# String input
|
||
|
non_int_round_dict = {"col1": 1, "col2": "foo"}
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(non_int_round_dict)
|
||
|
|
||
|
non_int_round_Series = Series(non_int_round_dict)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(non_int_round_Series)
|
||
|
|
||
|
# List input
|
||
|
non_int_round_dict = {"col1": 1, "col2": [1, 2]}
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(non_int_round_dict)
|
||
|
|
||
|
non_int_round_Series = Series(non_int_round_dict)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(non_int_round_Series)
|
||
|
|
||
|
# Non integer Series inputs
|
||
|
non_int_round_Series = Series(non_int_round_dict)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(non_int_round_Series)
|
||
|
|
||
|
non_int_round_Series = Series(non_int_round_dict)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(non_int_round_Series)
|
||
|
|
||
|
# Negative numbers
|
||
|
negative_round_dict = {"col1": -1, "col2": -2}
|
||
|
big_df = df * 100
|
||
|
expected_neg_rounded = DataFrame(
|
||
|
{"col1": [110.0, 210, 310], "col2": [100.0, 200, 300]}
|
||
|
)
|
||
|
tm.assert_frame_equal(big_df.round(negative_round_dict), expected_neg_rounded)
|
||
|
|
||
|
# nan in Series round
|
||
|
nan_round_Series = Series({"col1": np.nan, "col2": 1})
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df.round(nan_round_Series)
|
||
|
|
||
|
# Make sure this doesn't break existing Series.round
|
||
|
tm.assert_series_equal(df["col1"].round(1), expected_rounded["col1"])
|
||
|
|
||
|
# named columns
|
||
|
# GH#11986
|
||
|
decimals = 2
|
||
|
expected_rounded = DataFrame(
|
||
|
{"col1": [1.12, 2.12, 3.12], "col2": [1.23, 2.23, 3.23]}
|
||
|
)
|
||
|
df.columns.name = "cols"
|
||
|
expected_rounded.columns.name = "cols"
|
||
|
tm.assert_frame_equal(df.round(decimals), expected_rounded)
|
||
|
|
||
|
# interaction of named columns & series
|
||
|
tm.assert_series_equal(df["col1"].round(decimals), expected_rounded["col1"])
|
||
|
tm.assert_series_equal(df.round(decimals)["col1"], expected_rounded["col1"])
|
||
|
|
||
|
def test_round_numpy(self):
|
||
|
# GH#12600
|
||
|
df = DataFrame([[1.53, 1.36], [0.06, 7.01]])
|
||
|
out = np.round(df, decimals=0)
|
||
|
expected = DataFrame([[2.0, 1.0], [0.0, 7.0]])
|
||
|
tm.assert_frame_equal(out, expected)
|
||
|
|
||
|
msg = "the 'out' parameter is not supported"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
np.round(df, decimals=0, out=df)
|
||
|
|
||
|
def test_round_numpy_with_nan(self):
|
||
|
# See GH#14197
|
||
|
df = Series([1.53, np.nan, 0.06]).to_frame()
|
||
|
with tm.assert_produces_warning(None):
|
||
|
result = df.round()
|
||
|
expected = Series([2.0, np.nan, 0.0]).to_frame()
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_round_mixed_type(self):
|
||
|
# GH#11885
|
||
|
df = DataFrame(
|
||
|
{
|
||
|
"col1": [1.1, 2.2, 3.3, 4.4],
|
||
|
"col2": ["1", "a", "c", "f"],
|
||
|
"col3": date_range("20111111", periods=4),
|
||
|
}
|
||
|
)
|
||
|
round_0 = DataFrame(
|
||
|
{
|
||
|
"col1": [1.0, 2.0, 3.0, 4.0],
|
||
|
"col2": ["1", "a", "c", "f"],
|
||
|
"col3": date_range("20111111", periods=4),
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(df.round(), round_0)
|
||
|
tm.assert_frame_equal(df.round(1), df)
|
||
|
tm.assert_frame_equal(df.round({"col1": 1}), df)
|
||
|
tm.assert_frame_equal(df.round({"col1": 0}), round_0)
|
||
|
tm.assert_frame_equal(df.round({"col1": 0, "col2": 1}), round_0)
|
||
|
tm.assert_frame_equal(df.round({"col3": 1}), df)
|
||
|
|
||
|
def test_round_with_duplicate_columns(self):
|
||
|
# GH#11611
|
||
|
|
||
|
df = DataFrame(
|
||
|
np.random.random([3, 3]),
|
||
|
columns=["A", "B", "C"],
|
||
|
index=["first", "second", "third"],
|
||
|
)
|
||
|
|
||
|
dfs = pd.concat((df, df), axis=1)
|
||
|
rounded = dfs.round()
|
||
|
tm.assert_index_equal(rounded.index, dfs.index)
|
||
|
|
||
|
decimals = Series([1, 0, 2], index=["A", "B", "A"])
|
||
|
msg = "Index of decimals must be unique"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.round(decimals)
|
||
|
|
||
|
def test_round_builtin(self):
|
||
|
# GH#11763
|
||
|
# Here's the test frame we'll be working with
|
||
|
df = DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]})
|
||
|
|
||
|
# Default round to integer (i.e. decimals=0)
|
||
|
expected_rounded = DataFrame({"col1": [1.0, 2.0, 3.0], "col2": [1.0, 2.0, 3.0]})
|
||
|
tm.assert_frame_equal(round(df), expected_rounded)
|
||
|
|
||
|
def test_round_nonunique_categorical(self):
|
||
|
# See GH#21809
|
||
|
idx = pd.CategoricalIndex(["low"] * 3 + ["hi"] * 3)
|
||
|
df = DataFrame(np.random.rand(6, 3), columns=list("abc"))
|
||
|
|
||
|
expected = df.round(3)
|
||
|
expected.index = idx
|
||
|
|
||
|
df_categorical = df.copy().set_index(idx)
|
||
|
assert df_categorical.shape == (6, 3)
|
||
|
result = df_categorical.round(3)
|
||
|
assert result.shape == (6, 3)
|
||
|
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_round_interval_category_columns(self):
|
||
|
# GH#30063
|
||
|
columns = pd.CategoricalIndex(pd.interval_range(0, 2))
|
||
|
df = DataFrame([[0.66, 1.1], [0.3, 0.25]], columns=columns)
|
||
|
|
||
|
result = df.round()
|
||
|
expected = DataFrame([[1.0, 1.0], [0.0, 0.0]], columns=columns)
|
||
|
tm.assert_frame_equal(result, expected)
|