498 lines
17 KiB
Python
498 lines
17 KiB
Python
|
from datetime import (
|
||
|
datetime,
|
||
|
timedelta,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas._libs.algos import (
|
||
|
Infinity,
|
||
|
NegInfinity,
|
||
|
)
|
||
|
import pandas.util._test_decorators as td
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestRank:
|
||
|
s = Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])
|
||
|
df = DataFrame({"A": s, "B": s})
|
||
|
|
||
|
results = {
|
||
|
"average": np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5]),
|
||
|
"min": np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5]),
|
||
|
"max": np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6]),
|
||
|
"first": np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6]),
|
||
|
"dense": np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]),
|
||
|
}
|
||
|
|
||
|
@pytest.fixture(params=["average", "min", "max", "first", "dense"])
|
||
|
def method(self, request):
|
||
|
"""
|
||
|
Fixture for trying all rank methods
|
||
|
"""
|
||
|
return request.param
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_rank(self, float_frame):
|
||
|
import scipy.stats # noqa:F401
|
||
|
from scipy.stats import rankdata
|
||
|
|
||
|
float_frame["A"][::2] = np.nan
|
||
|
float_frame["B"][::3] = np.nan
|
||
|
float_frame["C"][::4] = np.nan
|
||
|
float_frame["D"][::5] = np.nan
|
||
|
|
||
|
ranks0 = float_frame.rank()
|
||
|
ranks1 = float_frame.rank(1)
|
||
|
mask = np.isnan(float_frame.values)
|
||
|
|
||
|
fvals = float_frame.fillna(np.inf).values
|
||
|
|
||
|
exp0 = np.apply_along_axis(rankdata, 0, fvals)
|
||
|
exp0[mask] = np.nan
|
||
|
|
||
|
exp1 = np.apply_along_axis(rankdata, 1, fvals)
|
||
|
exp1[mask] = np.nan
|
||
|
|
||
|
tm.assert_almost_equal(ranks0.values, exp0)
|
||
|
tm.assert_almost_equal(ranks1.values, exp1)
|
||
|
|
||
|
# integers
|
||
|
df = DataFrame(np.random.randint(0, 5, size=40).reshape((10, 4)))
|
||
|
|
||
|
result = df.rank()
|
||
|
exp = df.astype(float).rank()
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
result = df.rank(1)
|
||
|
exp = df.astype(float).rank(1)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
def test_rank2(self):
|
||
|
df = DataFrame([[1, 3, 2], [1, 2, 3]])
|
||
|
expected = DataFrame([[1.0, 3.0, 2.0], [1, 2, 3]]) / 3.0
|
||
|
result = df.rank(1, pct=True)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
df = DataFrame([[1, 3, 2], [1, 2, 3]])
|
||
|
expected = df.rank(0) / 2.0
|
||
|
result = df.rank(0, pct=True)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
df = DataFrame([["b", "c", "a"], ["a", "c", "b"]])
|
||
|
expected = DataFrame([[2.0, 3.0, 1.0], [1, 3, 2]])
|
||
|
result = df.rank(1, numeric_only=False)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
expected = DataFrame([[2.0, 1.5, 1.0], [1, 1.5, 2]])
|
||
|
result = df.rank(0, numeric_only=False)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
df = DataFrame([["b", np.nan, "a"], ["a", "c", "b"]])
|
||
|
expected = DataFrame([[2.0, np.nan, 1.0], [1.0, 3.0, 2.0]])
|
||
|
result = df.rank(1, numeric_only=False)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
expected = DataFrame([[2.0, np.nan, 1.0], [1.0, 1.0, 2.0]])
|
||
|
result = df.rank(0, numeric_only=False)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
# f7u12, this does not work without extensive workaround
|
||
|
data = [
|
||
|
[datetime(2001, 1, 5), np.nan, datetime(2001, 1, 2)],
|
||
|
[datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 1)],
|
||
|
]
|
||
|
df = DataFrame(data)
|
||
|
|
||
|
# check the rank
|
||
|
expected = DataFrame([[2.0, np.nan, 1.0], [2.0, 3.0, 1.0]])
|
||
|
result = df.rank(1, numeric_only=False, ascending=True)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
expected = DataFrame([[1.0, np.nan, 2.0], [2.0, 1.0, 3.0]])
|
||
|
result = df.rank(1, numeric_only=False, ascending=False)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
df = DataFrame({"a": [1e-20, -5, 1e-20 + 1e-40, 10, 1e60, 1e80, 1e-30]})
|
||
|
exp = DataFrame({"a": [3.5, 1.0, 3.5, 5.0, 6.0, 7.0, 2.0]})
|
||
|
tm.assert_frame_equal(df.rank(), exp)
|
||
|
|
||
|
def test_rank_does_not_mutate(self):
|
||
|
# GH#18521
|
||
|
# Check rank does not mutate DataFrame
|
||
|
df = DataFrame(np.random.randn(10, 3), dtype="float64")
|
||
|
expected = df.copy()
|
||
|
df.rank()
|
||
|
result = df
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_rank_mixed_frame(self, float_string_frame):
|
||
|
float_string_frame["datetime"] = datetime.now()
|
||
|
float_string_frame["timedelta"] = timedelta(days=1, seconds=1)
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning, match="numeric_only=None"):
|
||
|
float_string_frame.rank(numeric_only=None)
|
||
|
with tm.assert_produces_warning(FutureWarning, match="Dropping of nuisance"):
|
||
|
result = float_string_frame.rank(1)
|
||
|
expected = float_string_frame.rank(1, numeric_only=True)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_rank_na_option(self, float_frame):
|
||
|
import scipy.stats # noqa:F401
|
||
|
from scipy.stats import rankdata
|
||
|
|
||
|
float_frame["A"][::2] = np.nan
|
||
|
float_frame["B"][::3] = np.nan
|
||
|
float_frame["C"][::4] = np.nan
|
||
|
float_frame["D"][::5] = np.nan
|
||
|
|
||
|
# bottom
|
||
|
ranks0 = float_frame.rank(na_option="bottom")
|
||
|
ranks1 = float_frame.rank(1, na_option="bottom")
|
||
|
|
||
|
fvals = float_frame.fillna(np.inf).values
|
||
|
|
||
|
exp0 = np.apply_along_axis(rankdata, 0, fvals)
|
||
|
exp1 = np.apply_along_axis(rankdata, 1, fvals)
|
||
|
|
||
|
tm.assert_almost_equal(ranks0.values, exp0)
|
||
|
tm.assert_almost_equal(ranks1.values, exp1)
|
||
|
|
||
|
# top
|
||
|
ranks0 = float_frame.rank(na_option="top")
|
||
|
ranks1 = float_frame.rank(1, na_option="top")
|
||
|
|
||
|
fval0 = float_frame.fillna((float_frame.min() - 1).to_dict()).values
|
||
|
fval1 = float_frame.T
|
||
|
fval1 = fval1.fillna((fval1.min() - 1).to_dict()).T
|
||
|
fval1 = fval1.fillna(np.inf).values
|
||
|
|
||
|
exp0 = np.apply_along_axis(rankdata, 0, fval0)
|
||
|
exp1 = np.apply_along_axis(rankdata, 1, fval1)
|
||
|
|
||
|
tm.assert_almost_equal(ranks0.values, exp0)
|
||
|
tm.assert_almost_equal(ranks1.values, exp1)
|
||
|
|
||
|
# descending
|
||
|
|
||
|
# bottom
|
||
|
ranks0 = float_frame.rank(na_option="top", ascending=False)
|
||
|
ranks1 = float_frame.rank(1, na_option="top", ascending=False)
|
||
|
|
||
|
fvals = float_frame.fillna(np.inf).values
|
||
|
|
||
|
exp0 = np.apply_along_axis(rankdata, 0, -fvals)
|
||
|
exp1 = np.apply_along_axis(rankdata, 1, -fvals)
|
||
|
|
||
|
tm.assert_almost_equal(ranks0.values, exp0)
|
||
|
tm.assert_almost_equal(ranks1.values, exp1)
|
||
|
|
||
|
# descending
|
||
|
|
||
|
# top
|
||
|
ranks0 = float_frame.rank(na_option="bottom", ascending=False)
|
||
|
ranks1 = float_frame.rank(1, na_option="bottom", ascending=False)
|
||
|
|
||
|
fval0 = float_frame.fillna((float_frame.min() - 1).to_dict()).values
|
||
|
fval1 = float_frame.T
|
||
|
fval1 = fval1.fillna((fval1.min() - 1).to_dict()).T
|
||
|
fval1 = fval1.fillna(np.inf).values
|
||
|
|
||
|
exp0 = np.apply_along_axis(rankdata, 0, -fval0)
|
||
|
exp1 = np.apply_along_axis(rankdata, 1, -fval1)
|
||
|
|
||
|
tm.assert_numpy_array_equal(ranks0.values, exp0)
|
||
|
tm.assert_numpy_array_equal(ranks1.values, exp1)
|
||
|
|
||
|
# bad values throw error
|
||
|
msg = "na_option must be one of 'keep', 'top', or 'bottom'"
|
||
|
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
float_frame.rank(na_option="bad", ascending=False)
|
||
|
|
||
|
# invalid type
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
float_frame.rank(na_option=True, ascending=False)
|
||
|
|
||
|
def test_rank_axis(self):
|
||
|
# check if using axes' names gives the same result
|
||
|
df = DataFrame([[2, 1], [4, 3]])
|
||
|
tm.assert_frame_equal(df.rank(axis=0), df.rank(axis="index"))
|
||
|
tm.assert_frame_equal(df.rank(axis=1), df.rank(axis="columns"))
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_rank_methods_frame(self):
|
||
|
import scipy.stats # noqa:F401
|
||
|
from scipy.stats import rankdata
|
||
|
|
||
|
xs = np.random.randint(0, 21, (100, 26))
|
||
|
xs = (xs - 10.0) / 10.0
|
||
|
cols = [chr(ord("z") - i) for i in range(xs.shape[1])]
|
||
|
|
||
|
for vals in [xs, xs + 1e6, xs * 1e-6]:
|
||
|
df = DataFrame(vals, columns=cols)
|
||
|
|
||
|
for ax in [0, 1]:
|
||
|
for m in ["average", "min", "max", "first", "dense"]:
|
||
|
result = df.rank(axis=ax, method=m)
|
||
|
sprank = np.apply_along_axis(
|
||
|
rankdata, ax, vals, m if m != "first" else "ordinal"
|
||
|
)
|
||
|
sprank = sprank.astype(np.float64)
|
||
|
expected = DataFrame(sprank, columns=cols).astype("float64")
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", ["O", "f8", "i8"])
|
||
|
@pytest.mark.filterwarnings("ignore:.*Select only valid:FutureWarning")
|
||
|
def test_rank_descending(self, method, dtype):
|
||
|
if "i" in dtype:
|
||
|
df = self.df.dropna().astype(dtype)
|
||
|
else:
|
||
|
df = self.df.astype(dtype)
|
||
|
|
||
|
res = df.rank(ascending=False)
|
||
|
expected = (df.max() - df).rank()
|
||
|
tm.assert_frame_equal(res, expected)
|
||
|
|
||
|
expected = (df.max() - df).rank(method=method)
|
||
|
|
||
|
if dtype != "O":
|
||
|
res2 = df.rank(method=method, ascending=False, numeric_only=True)
|
||
|
tm.assert_frame_equal(res2, expected)
|
||
|
|
||
|
res3 = df.rank(method=method, ascending=False, numeric_only=False)
|
||
|
tm.assert_frame_equal(res3, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("axis", [0, 1])
|
||
|
@pytest.mark.parametrize("dtype", [None, object])
|
||
|
def test_rank_2d_tie_methods(self, method, axis, dtype):
|
||
|
df = self.df
|
||
|
|
||
|
def _check2d(df, expected, method="average", axis=0):
|
||
|
exp_df = DataFrame({"A": expected, "B": expected})
|
||
|
|
||
|
if axis == 1:
|
||
|
df = df.T
|
||
|
exp_df = exp_df.T
|
||
|
|
||
|
result = df.rank(method=method, axis=axis)
|
||
|
tm.assert_frame_equal(result, exp_df)
|
||
|
|
||
|
frame = df if dtype is None else df.astype(dtype)
|
||
|
_check2d(frame, self.results[method], method=method, axis=axis)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"method,exp",
|
||
|
[
|
||
|
("dense", [[1.0, 1.0, 1.0], [1.0, 0.5, 2.0 / 3], [1.0, 0.5, 1.0 / 3]]),
|
||
|
(
|
||
|
"min",
|
||
|
[
|
||
|
[1.0 / 3, 1.0, 1.0],
|
||
|
[1.0 / 3, 1.0 / 3, 2.0 / 3],
|
||
|
[1.0 / 3, 1.0 / 3, 1.0 / 3],
|
||
|
],
|
||
|
),
|
||
|
(
|
||
|
"max",
|
||
|
[[1.0, 1.0, 1.0], [1.0, 2.0 / 3, 2.0 / 3], [1.0, 2.0 / 3, 1.0 / 3]],
|
||
|
),
|
||
|
(
|
||
|
"average",
|
||
|
[[2.0 / 3, 1.0, 1.0], [2.0 / 3, 0.5, 2.0 / 3], [2.0 / 3, 0.5, 1.0 / 3]],
|
||
|
),
|
||
|
(
|
||
|
"first",
|
||
|
[
|
||
|
[1.0 / 3, 1.0, 1.0],
|
||
|
[2.0 / 3, 1.0 / 3, 2.0 / 3],
|
||
|
[3.0 / 3, 2.0 / 3, 1.0 / 3],
|
||
|
],
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_rank_pct_true(self, method, exp):
|
||
|
# see gh-15630.
|
||
|
|
||
|
df = DataFrame([[2012, 66, 3], [2012, 65, 2], [2012, 65, 1]])
|
||
|
result = df.rank(method=method, pct=True)
|
||
|
|
||
|
expected = DataFrame(exp)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.single_cpu
|
||
|
def test_pct_max_many_rows(self):
|
||
|
# GH 18271
|
||
|
df = DataFrame(
|
||
|
{"A": np.arange(2**24 + 1), "B": np.arange(2**24 + 1, 0, -1)}
|
||
|
)
|
||
|
result = df.rank(pct=True).max()
|
||
|
assert (result == 1).all()
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"contents,dtype",
|
||
|
[
|
||
|
(
|
||
|
[
|
||
|
-np.inf,
|
||
|
-50,
|
||
|
-1,
|
||
|
-1e-20,
|
||
|
-1e-25,
|
||
|
-1e-50,
|
||
|
0,
|
||
|
1e-40,
|
||
|
1e-20,
|
||
|
1e-10,
|
||
|
2,
|
||
|
40,
|
||
|
np.inf,
|
||
|
],
|
||
|
"float64",
|
||
|
),
|
||
|
(
|
||
|
[
|
||
|
-np.inf,
|
||
|
-50,
|
||
|
-1,
|
||
|
-1e-20,
|
||
|
-1e-25,
|
||
|
-1e-45,
|
||
|
0,
|
||
|
1e-40,
|
||
|
1e-20,
|
||
|
1e-10,
|
||
|
2,
|
||
|
40,
|
||
|
np.inf,
|
||
|
],
|
||
|
"float32",
|
||
|
),
|
||
|
([np.iinfo(np.uint8).min, 1, 2, 100, np.iinfo(np.uint8).max], "uint8"),
|
||
|
(
|
||
|
[
|
||
|
np.iinfo(np.int64).min,
|
||
|
-100,
|
||
|
0,
|
||
|
1,
|
||
|
9999,
|
||
|
100000,
|
||
|
1e10,
|
||
|
np.iinfo(np.int64).max,
|
||
|
],
|
||
|
"int64",
|
||
|
),
|
||
|
([NegInfinity(), "1", "A", "BA", "Ba", "C", Infinity()], "object"),
|
||
|
(
|
||
|
[datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 5)],
|
||
|
"datetime64",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_rank_inf_and_nan(self, contents, dtype, frame_or_series):
|
||
|
dtype_na_map = {
|
||
|
"float64": np.nan,
|
||
|
"float32": np.nan,
|
||
|
"object": None,
|
||
|
"datetime64": np.datetime64("nat"),
|
||
|
}
|
||
|
# Insert nans at random positions if underlying dtype has missing
|
||
|
# value. Then adjust the expected order by adding nans accordingly
|
||
|
# This is for testing whether rank calculation is affected
|
||
|
# when values are interwined with nan values.
|
||
|
values = np.array(contents, dtype=dtype)
|
||
|
exp_order = np.array(range(len(values)), dtype="float64") + 1.0
|
||
|
if dtype in dtype_na_map:
|
||
|
na_value = dtype_na_map[dtype]
|
||
|
nan_indices = np.random.choice(range(len(values)), 5)
|
||
|
values = np.insert(values, nan_indices, na_value)
|
||
|
exp_order = np.insert(exp_order, nan_indices, np.nan)
|
||
|
|
||
|
# Shuffle the testing array and expected results in the same way
|
||
|
random_order = np.random.permutation(len(values))
|
||
|
obj = frame_or_series(values[random_order])
|
||
|
expected = frame_or_series(exp_order[random_order], dtype="float64")
|
||
|
result = obj.rank()
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_df_series_inf_nan_consistency(self):
|
||
|
# GH#32593
|
||
|
index = [5, 4, 3, 2, 1, 6, 7, 8, 9, 10]
|
||
|
col1 = [5, 4, 3, 5, 8, 5, 2, 1, 6, 6]
|
||
|
col2 = [5, 4, np.nan, 5, 8, 5, np.inf, np.nan, 6, -np.inf]
|
||
|
df = DataFrame(
|
||
|
data={
|
||
|
"col1": col1,
|
||
|
"col2": col2,
|
||
|
},
|
||
|
index=index,
|
||
|
dtype="f8",
|
||
|
)
|
||
|
df_result = df.rank()
|
||
|
|
||
|
series_result = df.copy()
|
||
|
series_result["col1"] = df["col1"].rank()
|
||
|
series_result["col2"] = df["col2"].rank()
|
||
|
|
||
|
tm.assert_frame_equal(df_result, series_result)
|
||
|
|
||
|
def test_rank_both_inf(self):
|
||
|
# GH#32593
|
||
|
df = DataFrame({"a": [-np.inf, 0, np.inf]})
|
||
|
expected = DataFrame({"a": [1.0, 2.0, 3.0]})
|
||
|
result = df.rank()
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"na_option,ascending,expected",
|
||
|
[
|
||
|
("top", True, [3.0, 1.0, 2.0]),
|
||
|
("top", False, [2.0, 1.0, 3.0]),
|
||
|
("bottom", True, [2.0, 3.0, 1.0]),
|
||
|
("bottom", False, [1.0, 3.0, 2.0]),
|
||
|
],
|
||
|
)
|
||
|
def test_rank_inf_nans_na_option(
|
||
|
self, frame_or_series, method, na_option, ascending, expected
|
||
|
):
|
||
|
obj = frame_or_series([np.inf, np.nan, -np.inf])
|
||
|
result = obj.rank(method=method, na_option=na_option, ascending=ascending)
|
||
|
expected = frame_or_series(expected)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"na_option,ascending,expected",
|
||
|
[
|
||
|
("bottom", True, [1.0, 2.0, 4.0, 3.0]),
|
||
|
("bottom", False, [1.0, 2.0, 4.0, 3.0]),
|
||
|
("top", True, [2.0, 3.0, 1.0, 4.0]),
|
||
|
("top", False, [2.0, 3.0, 1.0, 4.0]),
|
||
|
],
|
||
|
)
|
||
|
def test_rank_object_first(self, frame_or_series, na_option, ascending, expected):
|
||
|
obj = frame_or_series(["foo", "foo", None, "foo"])
|
||
|
result = obj.rank(method="first", na_option=na_option, ascending=ascending)
|
||
|
expected = frame_or_series(expected)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"data,expected",
|
||
|
[
|
||
|
({"a": [1, 2, "a"], "b": [4, 5, 6]}, DataFrame({"b": [1.0, 2.0, 3.0]})),
|
||
|
({"a": [1, 2, "a"]}, DataFrame(index=range(3))),
|
||
|
],
|
||
|
)
|
||
|
def test_rank_mixed_axis_zero(self, data, expected):
|
||
|
df = DataFrame(data)
|
||
|
msg = "Dropping of nuisance columns"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = df.rank()
|
||
|
tm.assert_frame_equal(result, expected)
|