107 lines
3.4 KiB
Python
107 lines
3.4 KiB
Python
|
"""
|
||
|
test_insert is specifically for the DataFrame.insert method; not to be
|
||
|
confused with tests with "insert" in their names that are really testing
|
||
|
__setitem__.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.errors import PerformanceWarning
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Index,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestDataFrameInsert:
|
||
|
def test_insert(self):
|
||
|
df = DataFrame(
|
||
|
np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"]
|
||
|
)
|
||
|
|
||
|
df.insert(0, "foo", df["a"])
|
||
|
tm.assert_index_equal(df.columns, Index(["foo", "c", "b", "a"]))
|
||
|
tm.assert_series_equal(df["a"], df["foo"], check_names=False)
|
||
|
|
||
|
df.insert(2, "bar", df["c"])
|
||
|
tm.assert_index_equal(df.columns, Index(["foo", "c", "bar", "b", "a"]))
|
||
|
tm.assert_almost_equal(df["c"], df["bar"], check_names=False)
|
||
|
|
||
|
with pytest.raises(ValueError, match="already exists"):
|
||
|
df.insert(1, "a", df["b"])
|
||
|
|
||
|
msg = "cannot insert c, already exists"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.insert(1, "c", df["b"])
|
||
|
|
||
|
df.columns.name = "some_name"
|
||
|
# preserve columns name field
|
||
|
df.insert(0, "baz", df["c"])
|
||
|
assert df.columns.name == "some_name"
|
||
|
|
||
|
def test_insert_column_bug_4032(self):
|
||
|
|
||
|
# GH#4032, inserting a column and renaming causing errors
|
||
|
df = DataFrame({"b": [1.1, 2.2]})
|
||
|
|
||
|
df = df.rename(columns={})
|
||
|
df.insert(0, "a", [1, 2])
|
||
|
result = df.rename(columns={})
|
||
|
|
||
|
str(result)
|
||
|
expected = DataFrame([[1, 1.1], [2, 2.2]], columns=["a", "b"])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
df.insert(0, "c", [1.3, 2.3])
|
||
|
result = df.rename(columns={})
|
||
|
|
||
|
str(result)
|
||
|
expected = DataFrame([[1.3, 1, 1.1], [2.3, 2, 2.2]], columns=["c", "a", "b"])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_insert_with_columns_dups(self):
|
||
|
# GH#14291
|
||
|
df = DataFrame()
|
||
|
df.insert(0, "A", ["g", "h", "i"], allow_duplicates=True)
|
||
|
df.insert(0, "A", ["d", "e", "f"], allow_duplicates=True)
|
||
|
df.insert(0, "A", ["a", "b", "c"], allow_duplicates=True)
|
||
|
exp = DataFrame(
|
||
|
[["a", "d", "g"], ["b", "e", "h"], ["c", "f", "i"]], columns=["A", "A", "A"]
|
||
|
)
|
||
|
tm.assert_frame_equal(df, exp)
|
||
|
|
||
|
def test_insert_item_cache(self, using_array_manager):
|
||
|
df = DataFrame(np.random.randn(4, 3))
|
||
|
ser = df[0]
|
||
|
|
||
|
if using_array_manager:
|
||
|
expected_warning = None
|
||
|
else:
|
||
|
# with BlockManager warn about high fragmentation of single dtype
|
||
|
expected_warning = PerformanceWarning
|
||
|
|
||
|
with tm.assert_produces_warning(expected_warning):
|
||
|
for n in range(100):
|
||
|
df[n + 3] = df[1] * n
|
||
|
|
||
|
ser.values[0] = 99
|
||
|
|
||
|
assert df.iloc[0, 0] == df[0][0]
|
||
|
|
||
|
def test_insert_EA_no_warning(self):
|
||
|
# PerformanceWarning about fragmented frame should not be raised when
|
||
|
# using EAs (https://github.com/pandas-dev/pandas/issues/44098)
|
||
|
df = DataFrame(np.random.randint(0, 100, size=(3, 100)), dtype="Int64")
|
||
|
with tm.assert_produces_warning(None):
|
||
|
df["a"] = np.array([1, 2, 3])
|
||
|
|
||
|
def test_insert_frame(self):
|
||
|
# GH#42403
|
||
|
df = DataFrame({"col1": [1, 2], "col2": [3, 4]})
|
||
|
|
||
|
msg = r"Expected a 1D array, got an array with shape \(2, 2\)"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.insert(1, "newcol", df)
|