aoc-2022/venv/Lib/site-packages/pandas/tests/extension/test_string.py

394 lines
13 KiB
Python
Raw Normal View History

"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
"""
import string
import numpy as np
import pytest
from pandas.compat import (
pa_version_under6p0,
pa_version_under7p0,
)
from pandas.errors import PerformanceWarning
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import ArrowStringArray
from pandas.core.arrays.string_ import StringDtype
from pandas.tests.extension import base
def split_array(arr):
if arr.dtype.storage != "pyarrow":
pytest.skip("only applicable for pyarrow chunked array n/a")
def _split_array(arr):
import pyarrow as pa
arrow_array = arr._data
split = len(arrow_array) // 2
arrow_array = pa.chunked_array(
[*arrow_array[:split].chunks, *arrow_array[split:].chunks]
)
assert arrow_array.num_chunks == 2
return type(arr)(arrow_array)
return _split_array(arr)
@pytest.fixture(params=[True, False])
def chunked(request):
return request.param
@pytest.fixture
def dtype(string_storage):
return StringDtype(storage=string_storage)
@pytest.fixture
def data(dtype, chunked):
strings = np.random.choice(list(string.ascii_letters), size=100)
while strings[0] == strings[1]:
strings = np.random.choice(list(string.ascii_letters), size=100)
arr = dtype.construct_array_type()._from_sequence(strings)
return split_array(arr) if chunked else arr
@pytest.fixture
def data_missing(dtype, chunked):
"""Length 2 array with [NA, Valid]"""
arr = dtype.construct_array_type()._from_sequence([pd.NA, "A"])
return split_array(arr) if chunked else arr
@pytest.fixture
def data_for_sorting(dtype, chunked):
arr = dtype.construct_array_type()._from_sequence(["B", "C", "A"])
return split_array(arr) if chunked else arr
@pytest.fixture
def data_missing_for_sorting(dtype, chunked):
arr = dtype.construct_array_type()._from_sequence(["B", pd.NA, "A"])
return split_array(arr) if chunked else arr
@pytest.fixture
def na_value():
return pd.NA
@pytest.fixture
def data_for_grouping(dtype, chunked):
arr = dtype.construct_array_type()._from_sequence(
["B", "B", pd.NA, pd.NA, "A", "A", "B", "C"]
)
return split_array(arr) if chunked else arr
class TestDtype(base.BaseDtypeTests):
def test_eq_with_str(self, dtype):
assert dtype == f"string[{dtype.storage}]"
super().test_eq_with_str(dtype)
class TestInterface(base.BaseInterfaceTests):
def test_view(self, data, request):
if data.dtype.storage == "pyarrow":
mark = pytest.mark.xfail(reason="not implemented")
request.node.add_marker(mark)
super().test_view(data)
class TestConstructors(base.BaseConstructorsTests):
def test_from_dtype(self, data):
# base test uses string representation of dtype
pass
class TestReshaping(base.BaseReshapingTests):
def test_transpose(self, data, request):
if data.dtype.storage == "pyarrow":
mark = pytest.mark.xfail(reason="not implemented")
request.node.add_marker(mark)
super().test_transpose(data)
class TestGetitem(base.BaseGetitemTests):
pass
class TestSetitem(base.BaseSetitemTests):
def test_setitem_preserves_views(self, data, request):
if data.dtype.storage == "pyarrow":
mark = pytest.mark.xfail(reason="not implemented")
request.node.add_marker(mark)
super().test_setitem_preserves_views(data)
class TestIndex(base.BaseIndexTests):
pass
class TestMissing(base.BaseMissingTests):
def test_dropna_array(self, data_missing):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under6p0 and data_missing.dtype.storage == "pyarrow",
):
result = data_missing.dropna()
expected = data_missing[[1]]
self.assert_extension_array_equal(result, expected)
class TestNoReduce(base.BaseNoReduceTests):
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
op_name = all_numeric_reductions
if op_name in ["min", "max"]:
return None
ser = pd.Series(data)
with pytest.raises(TypeError):
getattr(ser, op_name)(skipna=skipna)
class TestMethods(base.BaseMethodsTests):
def test_argsort(self, data_for_sorting):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_for_sorting.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_argsort(data_for_sorting)
def test_argsort_missing(self, data_missing_for_sorting):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_missing_for_sorting.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_argsort_missing(data_missing_for_sorting)
def test_argmin_argmax(
self, data_for_sorting, data_missing_for_sorting, na_value, request
):
if pa_version_under6p0 and data_missing_for_sorting.dtype.storage == "pyarrow":
request.node.add_marker(
pytest.mark.xfail(
raises=NotImplementedError,
reason="min_max not supported in pyarrow",
)
)
super().test_argmin_argmax(data_for_sorting, data_missing_for_sorting, na_value)
@pytest.mark.parametrize(
"op_name, skipna, expected",
[
("idxmax", True, 0),
("idxmin", True, 2),
("argmax", True, 0),
("argmin", True, 2),
("idxmax", False, np.nan),
("idxmin", False, np.nan),
("argmax", False, -1),
("argmin", False, -1),
],
)
def test_argreduce_series(
self, data_missing_for_sorting, op_name, skipna, expected, request
):
if (
pa_version_under6p0
and data_missing_for_sorting.dtype.storage == "pyarrow"
and skipna
):
request.node.add_marker(
pytest.mark.xfail(
raises=NotImplementedError,
reason="min_max not supported in pyarrow",
)
)
super().test_argreduce_series(
data_missing_for_sorting, op_name, skipna, expected
)
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna, request):
all_data = all_data[:10]
if dropna:
other = all_data[~all_data.isna()]
else:
other = all_data
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(all_data.dtype, "storage", "") == "pyarrow"
and not (dropna and "data_missing" in request.node.nodeid),
):
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(other.dtype, "storage", "") == "pyarrow"
and not (dropna and "data_missing" in request.node.nodeid),
):
expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
self.assert_series_equal(result, expected)
@pytest.mark.filterwarnings("ignore:Falling back:pandas.errors.PerformanceWarning")
def test_value_counts_with_normalize(self, data):
super().test_value_counts_with_normalize(data)
def test_argsort_missing_array(self, data_missing_for_sorting):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_missing_for_sorting.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_argsort_missing(data_missing_for_sorting)
@pytest.mark.parametrize(
"na_position, expected",
[
("last", np.array([2, 0, 1], dtype=np.dtype("intp"))),
("first", np.array([1, 2, 0], dtype=np.dtype("intp"))),
],
)
def test_nargsort(self, data_missing_for_sorting, na_position, expected):
# GH 25439
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_missing_for_sorting.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_nargsort(data_missing_for_sorting, na_position, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values(self, data_for_sorting, ascending, sort_by_key):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_for_sorting.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_sort_values(data_for_sorting, ascending, sort_by_key)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_missing(
self, data_missing_for_sorting, ascending, sort_by_key
):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_missing_for_sorting.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_sort_values_missing(
data_missing_for_sorting, ascending, sort_by_key
)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_frame(self, data_for_sorting, ascending):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_for_sorting.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_sort_values_frame(data_for_sorting, ascending)
class TestCasting(base.BaseCastingTests):
pass
class TestComparisonOps(base.BaseComparisonOpsTests):
def _compare_other(self, ser, data, op, other):
op_name = f"__{op.__name__}__"
result = getattr(ser, op_name)(other)
expected = getattr(ser.astype(object), op_name)(other).astype("boolean")
self.assert_series_equal(result, expected)
def test_compare_scalar(self, data, comparison_op):
ser = pd.Series(data)
self._compare_other(ser, data, comparison_op, "abc")
class TestParsing(base.BaseParsingTests):
pass
class TestPrinting(base.BasePrintingTests):
pass
class TestGroupBy(base.BaseGroupbyTests):
@pytest.mark.parametrize("as_index", [True, False])
def test_groupby_extension_agg(self, as_index, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_for_grouping.dtype, "storage", "") == "pyarrow",
):
result = df.groupby("B", as_index=as_index).A.mean()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_for_grouping.dtype, "storage", "") == "pyarrow",
):
_, uniques = pd.factorize(data_for_grouping, sort=True)
if as_index:
index = pd.Index._with_infer(uniques, name="B")
expected = pd.Series([3.0, 1.0, 4.0], index=index, name="A")
self.assert_series_equal(result, expected)
else:
expected = pd.DataFrame({"B": uniques, "A": [3.0, 1.0, 4.0]})
self.assert_frame_equal(result, expected)
def test_groupby_extension_transform(self, data_for_grouping):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(data_for_grouping.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_groupby_extension_transform(data_for_grouping)
@pytest.mark.filterwarnings("ignore:Falling back:pandas.errors.PerformanceWarning")
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)
class Test2DCompat(base.Dim2CompatTests):
@pytest.fixture(autouse=True)
def arrow_not_supported(self, data, request):
if isinstance(data, ArrowStringArray):
mark = pytest.mark.xfail(
reason="2D support not implemented for ArrowStringArray"
)
request.node.add_marker(mark)