43 lines
1.0 KiB
Python
43 lines
1.0 KiB
Python
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas.core.arrays import period_array
|
||
|
|
||
|
|
||
|
class TestReductions:
|
||
|
def test_min_max(self):
|
||
|
arr = period_array(
|
||
|
[
|
||
|
"2000-01-03",
|
||
|
"2000-01-03",
|
||
|
"NaT",
|
||
|
"2000-01-02",
|
||
|
"2000-01-05",
|
||
|
"2000-01-04",
|
||
|
],
|
||
|
freq="D",
|
||
|
)
|
||
|
|
||
|
result = arr.min()
|
||
|
expected = pd.Period("2000-01-02", freq="D")
|
||
|
assert result == expected
|
||
|
|
||
|
result = arr.max()
|
||
|
expected = pd.Period("2000-01-05", freq="D")
|
||
|
assert result == expected
|
||
|
|
||
|
result = arr.min(skipna=False)
|
||
|
assert result is pd.NaT
|
||
|
|
||
|
result = arr.max(skipna=False)
|
||
|
assert result is pd.NaT
|
||
|
|
||
|
@pytest.mark.parametrize("skipna", [True, False])
|
||
|
def test_min_max_empty(self, skipna):
|
||
|
arr = period_array([], freq="D")
|
||
|
result = arr.min(skipna=skipna)
|
||
|
assert result is pd.NaT
|
||
|
|
||
|
result = arr.max(skipna=skipna)
|
||
|
assert result is pd.NaT
|