127 lines
3.9 KiB
Python
127 lines
3.9 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"ufunc", [np.add, np.logical_or, np.logical_and, np.logical_xor]
|
||
|
)
|
||
|
def test_ufuncs_binary(ufunc):
|
||
|
# two BooleanArrays
|
||
|
a = pd.array([True, False, None], dtype="boolean")
|
||
|
result = ufunc(a, a)
|
||
|
expected = pd.array(ufunc(a._data, a._data), dtype="boolean")
|
||
|
expected[a._mask] = np.nan
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
s = pd.Series(a)
|
||
|
result = ufunc(s, a)
|
||
|
expected = pd.Series(ufunc(a._data, a._data), dtype="boolean")
|
||
|
expected[a._mask] = np.nan
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# Boolean with numpy array
|
||
|
arr = np.array([True, True, False])
|
||
|
result = ufunc(a, arr)
|
||
|
expected = pd.array(ufunc(a._data, arr), dtype="boolean")
|
||
|
expected[a._mask] = np.nan
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
result = ufunc(arr, a)
|
||
|
expected = pd.array(ufunc(arr, a._data), dtype="boolean")
|
||
|
expected[a._mask] = np.nan
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# BooleanArray with scalar
|
||
|
result = ufunc(a, True)
|
||
|
expected = pd.array(ufunc(a._data, True), dtype="boolean")
|
||
|
expected[a._mask] = np.nan
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
result = ufunc(True, a)
|
||
|
expected = pd.array(ufunc(True, a._data), dtype="boolean")
|
||
|
expected[a._mask] = np.nan
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# not handled types
|
||
|
msg = r"operand type\(s\) all returned NotImplemented from __array_ufunc__"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
ufunc(a, "test")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("ufunc", [np.logical_not])
|
||
|
def test_ufuncs_unary(ufunc):
|
||
|
a = pd.array([True, False, None], dtype="boolean")
|
||
|
result = ufunc(a)
|
||
|
expected = pd.array(ufunc(a._data), dtype="boolean")
|
||
|
expected[a._mask] = np.nan
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
ser = pd.Series(a)
|
||
|
result = ufunc(ser)
|
||
|
expected = pd.Series(ufunc(a._data), dtype="boolean")
|
||
|
expected[a._mask] = np.nan
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_ufunc_numeric():
|
||
|
# np.sqrt on np.bool returns float16, which we upcast to Float32
|
||
|
# bc we do not have Float16
|
||
|
arr = pd.array([True, False, None], dtype="boolean")
|
||
|
|
||
|
res = np.sqrt(arr)
|
||
|
|
||
|
expected = pd.array([1, 0, None], dtype="Float32")
|
||
|
tm.assert_extension_array_equal(res, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("values", [[True, False], [True, None]])
|
||
|
def test_ufunc_reduce_raises(values):
|
||
|
arr = pd.array(values, dtype="boolean")
|
||
|
|
||
|
res = np.add.reduce(arr)
|
||
|
if arr[-1] is pd.NA:
|
||
|
expected = pd.NA
|
||
|
else:
|
||
|
expected = arr._data.sum()
|
||
|
tm.assert_almost_equal(res, expected)
|
||
|
|
||
|
|
||
|
def test_value_counts_na():
|
||
|
arr = pd.array([True, False, pd.NA], dtype="boolean")
|
||
|
result = arr.value_counts(dropna=False)
|
||
|
expected = pd.Series([1, 1, 1], index=arr, dtype="Int64")
|
||
|
assert expected.index.dtype == arr.dtype
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = arr.value_counts(dropna=True)
|
||
|
expected = pd.Series([1, 1], index=arr[:-1], dtype="Int64")
|
||
|
assert expected.index.dtype == arr.dtype
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_value_counts_with_normalize():
|
||
|
ser = pd.Series([True, False, pd.NA], dtype="boolean")
|
||
|
result = ser.value_counts(normalize=True)
|
||
|
expected = pd.Series([1, 1], index=ser[:-1], dtype="Float64") / 2
|
||
|
assert expected.index.dtype == "boolean"
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_diff():
|
||
|
a = pd.array(
|
||
|
[True, True, False, False, True, None, True, None, False], dtype="boolean"
|
||
|
)
|
||
|
result = pd.core.algorithms.diff(a, 1)
|
||
|
expected = pd.array(
|
||
|
[None, False, True, False, True, None, None, None, None], dtype="boolean"
|
||
|
)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
ser = pd.Series(a)
|
||
|
result = ser.diff()
|
||
|
expected = pd.Series(expected)
|
||
|
tm.assert_series_equal(result, expected)
|