918 lines
30 KiB
Python
918 lines
30 KiB
Python
|
"""
|
||
|
Constructor functions intended to be shared by pd.array, Series.__init__,
|
||
|
and Index.__new__.
|
||
|
|
||
|
These should not depend on core.internals.
|
||
|
"""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Any,
|
||
|
Optional,
|
||
|
Sequence,
|
||
|
Union,
|
||
|
cast,
|
||
|
overload,
|
||
|
)
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
import numpy.ma as ma
|
||
|
|
||
|
from pandas._libs import lib
|
||
|
from pandas._libs.tslibs.period import Period
|
||
|
from pandas._typing import (
|
||
|
AnyArrayLike,
|
||
|
ArrayLike,
|
||
|
Dtype,
|
||
|
DtypeObj,
|
||
|
T,
|
||
|
)
|
||
|
from pandas.errors import IntCastingNaNError
|
||
|
from pandas.util._exceptions import find_stack_level
|
||
|
|
||
|
from pandas.core.dtypes.base import (
|
||
|
ExtensionDtype,
|
||
|
_registry as registry,
|
||
|
)
|
||
|
from pandas.core.dtypes.cast import (
|
||
|
construct_1d_arraylike_from_scalar,
|
||
|
construct_1d_object_array_from_listlike,
|
||
|
maybe_cast_to_datetime,
|
||
|
maybe_cast_to_integer_array,
|
||
|
maybe_convert_platform,
|
||
|
maybe_infer_to_datetimelike,
|
||
|
maybe_upcast,
|
||
|
sanitize_to_nanoseconds,
|
||
|
)
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_datetime64_ns_dtype,
|
||
|
is_extension_array_dtype,
|
||
|
is_float_dtype,
|
||
|
is_integer_dtype,
|
||
|
is_list_like,
|
||
|
is_object_dtype,
|
||
|
is_timedelta64_ns_dtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.dtypes import (
|
||
|
DatetimeTZDtype,
|
||
|
PandasDtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.generic import (
|
||
|
ABCExtensionArray,
|
||
|
ABCIndex,
|
||
|
ABCPandasArray,
|
||
|
ABCRangeIndex,
|
||
|
ABCSeries,
|
||
|
)
|
||
|
from pandas.core.dtypes.missing import isna
|
||
|
|
||
|
import pandas.core.common as com
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas import (
|
||
|
ExtensionArray,
|
||
|
Index,
|
||
|
Series,
|
||
|
)
|
||
|
|
||
|
|
||
|
def array(
|
||
|
data: Sequence[object] | AnyArrayLike,
|
||
|
dtype: Dtype | None = None,
|
||
|
copy: bool = True,
|
||
|
) -> ExtensionArray:
|
||
|
"""
|
||
|
Create an array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : Sequence of objects
|
||
|
The scalars inside `data` should be instances of the
|
||
|
scalar type for `dtype`. It's expected that `data`
|
||
|
represents a 1-dimensional array of data.
|
||
|
|
||
|
When `data` is an Index or Series, the underlying array
|
||
|
will be extracted from `data`.
|
||
|
|
||
|
dtype : str, np.dtype, or ExtensionDtype, optional
|
||
|
The dtype to use for the array. This may be a NumPy
|
||
|
dtype or an extension type registered with pandas using
|
||
|
:meth:`pandas.api.extensions.register_extension_dtype`.
|
||
|
|
||
|
If not specified, there are two possibilities:
|
||
|
|
||
|
1. When `data` is a :class:`Series`, :class:`Index`, or
|
||
|
:class:`ExtensionArray`, the `dtype` will be taken
|
||
|
from the data.
|
||
|
2. Otherwise, pandas will attempt to infer the `dtype`
|
||
|
from the data.
|
||
|
|
||
|
Note that when `data` is a NumPy array, ``data.dtype`` is
|
||
|
*not* used for inferring the array type. This is because
|
||
|
NumPy cannot represent all the types of data that can be
|
||
|
held in extension arrays.
|
||
|
|
||
|
Currently, pandas will infer an extension dtype for sequences of
|
||
|
|
||
|
============================== =======================================
|
||
|
Scalar Type Array Type
|
||
|
============================== =======================================
|
||
|
:class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`
|
||
|
:class:`pandas.Period` :class:`pandas.arrays.PeriodArray`
|
||
|
:class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`
|
||
|
:class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`
|
||
|
:class:`int` :class:`pandas.arrays.IntegerArray`
|
||
|
:class:`float` :class:`pandas.arrays.FloatingArray`
|
||
|
:class:`str` :class:`pandas.arrays.StringArray` or
|
||
|
:class:`pandas.arrays.ArrowStringArray`
|
||
|
:class:`bool` :class:`pandas.arrays.BooleanArray`
|
||
|
============================== =======================================
|
||
|
|
||
|
The ExtensionArray created when the scalar type is :class:`str` is determined by
|
||
|
``pd.options.mode.string_storage`` if the dtype is not explicitly given.
|
||
|
|
||
|
For all other cases, NumPy's usual inference rules will be used.
|
||
|
|
||
|
.. versionchanged:: 1.0.0
|
||
|
|
||
|
Pandas infers nullable-integer dtype for integer data,
|
||
|
string dtype for string data, and nullable-boolean dtype
|
||
|
for boolean data.
|
||
|
|
||
|
.. versionchanged:: 1.2.0
|
||
|
|
||
|
Pandas now also infers nullable-floating dtype for float-like
|
||
|
input data
|
||
|
|
||
|
copy : bool, default True
|
||
|
Whether to copy the data, even if not necessary. Depending
|
||
|
on the type of `data`, creating the new array may require
|
||
|
copying data, even if ``copy=False``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ExtensionArray
|
||
|
The newly created array.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
When `data` is not 1-dimensional.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.array : Construct a NumPy array.
|
||
|
Series : Construct a pandas Series.
|
||
|
Index : Construct a pandas Index.
|
||
|
arrays.PandasArray : ExtensionArray wrapping a NumPy array.
|
||
|
Series.array : Extract the array stored within a Series.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Omitting the `dtype` argument means pandas will attempt to infer the
|
||
|
best array type from the values in the data. As new array types are
|
||
|
added by pandas and 3rd party libraries, the "best" array type may
|
||
|
change. We recommend specifying `dtype` to ensure that
|
||
|
|
||
|
1. the correct array type for the data is returned
|
||
|
2. the returned array type doesn't change as new extension types
|
||
|
are added by pandas and third-party libraries
|
||
|
|
||
|
Additionally, if the underlying memory representation of the returned
|
||
|
array matters, we recommend specifying the `dtype` as a concrete object
|
||
|
rather than a string alias or allowing it to be inferred. For example,
|
||
|
a future version of pandas or a 3rd-party library may include a
|
||
|
dedicated ExtensionArray for string data. In this event, the following
|
||
|
would no longer return a :class:`arrays.PandasArray` backed by a NumPy
|
||
|
array.
|
||
|
|
||
|
>>> pd.array(['a', 'b'], dtype=str)
|
||
|
<PandasArray>
|
||
|
['a', 'b']
|
||
|
Length: 2, dtype: str32
|
||
|
|
||
|
This would instead return the new ExtensionArray dedicated for string
|
||
|
data. If you really need the new array to be backed by a NumPy array,
|
||
|
specify that in the dtype.
|
||
|
|
||
|
>>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
|
||
|
<PandasArray>
|
||
|
['a', 'b']
|
||
|
Length: 2, dtype: str32
|
||
|
|
||
|
Finally, Pandas has arrays that mostly overlap with NumPy
|
||
|
|
||
|
* :class:`arrays.DatetimeArray`
|
||
|
* :class:`arrays.TimedeltaArray`
|
||
|
|
||
|
When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
|
||
|
passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
|
||
|
rather than a ``PandasArray``. This is for symmetry with the case of
|
||
|
timezone-aware data, which NumPy does not natively support.
|
||
|
|
||
|
>>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
|
||
|
<DatetimeArray>
|
||
|
['2015-01-01 00:00:00', '2016-01-01 00:00:00']
|
||
|
Length: 2, dtype: datetime64[ns]
|
||
|
|
||
|
>>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
|
||
|
<TimedeltaArray>
|
||
|
['0 days 01:00:00', '0 days 02:00:00']
|
||
|
Length: 2, dtype: timedelta64[ns]
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
If a dtype is not specified, pandas will infer the best dtype from the values.
|
||
|
See the description of `dtype` for the types pandas infers for.
|
||
|
|
||
|
>>> pd.array([1, 2])
|
||
|
<IntegerArray>
|
||
|
[1, 2]
|
||
|
Length: 2, dtype: Int64
|
||
|
|
||
|
>>> pd.array([1, 2, np.nan])
|
||
|
<IntegerArray>
|
||
|
[1, 2, <NA>]
|
||
|
Length: 3, dtype: Int64
|
||
|
|
||
|
>>> pd.array([1.1, 2.2])
|
||
|
<FloatingArray>
|
||
|
[1.1, 2.2]
|
||
|
Length: 2, dtype: Float64
|
||
|
|
||
|
>>> pd.array(["a", None, "c"])
|
||
|
<StringArray>
|
||
|
['a', <NA>, 'c']
|
||
|
Length: 3, dtype: string
|
||
|
|
||
|
>>> with pd.option_context("string_storage", "pyarrow"):
|
||
|
... arr = pd.array(["a", None, "c"])
|
||
|
...
|
||
|
>>> arr
|
||
|
<ArrowStringArray>
|
||
|
['a', <NA>, 'c']
|
||
|
Length: 3, dtype: string
|
||
|
|
||
|
>>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
|
||
|
<PeriodArray>
|
||
|
['2000-01-01', '2000-01-01']
|
||
|
Length: 2, dtype: period[D]
|
||
|
|
||
|
You can use the string alias for `dtype`
|
||
|
|
||
|
>>> pd.array(['a', 'b', 'a'], dtype='category')
|
||
|
['a', 'b', 'a']
|
||
|
Categories (2, object): ['a', 'b']
|
||
|
|
||
|
Or specify the actual dtype
|
||
|
|
||
|
>>> pd.array(['a', 'b', 'a'],
|
||
|
... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
|
||
|
['a', 'b', 'a']
|
||
|
Categories (3, object): ['a' < 'b' < 'c']
|
||
|
|
||
|
If pandas does not infer a dedicated extension type a
|
||
|
:class:`arrays.PandasArray` is returned.
|
||
|
|
||
|
>>> pd.array([1 + 1j, 3 + 2j])
|
||
|
<PandasArray>
|
||
|
[(1+1j), (3+2j)]
|
||
|
Length: 2, dtype: complex128
|
||
|
|
||
|
As mentioned in the "Notes" section, new extension types may be added
|
||
|
in the future (by pandas or 3rd party libraries), causing the return
|
||
|
value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype`
|
||
|
as a NumPy dtype if you need to ensure there's no future change in
|
||
|
behavior.
|
||
|
|
||
|
>>> pd.array([1, 2], dtype=np.dtype("int32"))
|
||
|
<PandasArray>
|
||
|
[1, 2]
|
||
|
Length: 2, dtype: int32
|
||
|
|
||
|
`data` must be 1-dimensional. A ValueError is raised when the input
|
||
|
has the wrong dimensionality.
|
||
|
|
||
|
>>> pd.array(1)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: Cannot pass scalar '1' to 'pandas.array'.
|
||
|
"""
|
||
|
from pandas.core.arrays import (
|
||
|
BooleanArray,
|
||
|
DatetimeArray,
|
||
|
ExtensionArray,
|
||
|
FloatingArray,
|
||
|
IntegerArray,
|
||
|
IntervalArray,
|
||
|
PandasArray,
|
||
|
PeriodArray,
|
||
|
TimedeltaArray,
|
||
|
)
|
||
|
from pandas.core.arrays.string_ import StringDtype
|
||
|
|
||
|
if lib.is_scalar(data):
|
||
|
msg = f"Cannot pass scalar '{data}' to 'pandas.array'."
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
if dtype is None and isinstance(data, (ABCSeries, ABCIndex, ExtensionArray)):
|
||
|
# Note: we exclude np.ndarray here, will do type inference on it
|
||
|
dtype = data.dtype
|
||
|
|
||
|
data = extract_array(data, extract_numpy=True)
|
||
|
|
||
|
# this returns None for not-found dtypes.
|
||
|
if isinstance(dtype, str):
|
||
|
dtype = registry.find(dtype) or dtype
|
||
|
|
||
|
if is_extension_array_dtype(dtype):
|
||
|
cls = cast(ExtensionDtype, dtype).construct_array_type()
|
||
|
return cls._from_sequence(data, dtype=dtype, copy=copy)
|
||
|
|
||
|
if dtype is None:
|
||
|
inferred_dtype = lib.infer_dtype(data, skipna=True)
|
||
|
if inferred_dtype == "period":
|
||
|
period_data = cast(Union[Sequence[Optional[Period]], AnyArrayLike], data)
|
||
|
return PeriodArray._from_sequence(period_data, copy=copy)
|
||
|
|
||
|
elif inferred_dtype == "interval":
|
||
|
return IntervalArray(data, copy=copy)
|
||
|
|
||
|
elif inferred_dtype.startswith("datetime"):
|
||
|
# datetime, datetime64
|
||
|
try:
|
||
|
return DatetimeArray._from_sequence(data, copy=copy)
|
||
|
except ValueError:
|
||
|
# Mixture of timezones, fall back to PandasArray
|
||
|
pass
|
||
|
|
||
|
elif inferred_dtype.startswith("timedelta"):
|
||
|
# timedelta, timedelta64
|
||
|
return TimedeltaArray._from_sequence(data, copy=copy)
|
||
|
|
||
|
elif inferred_dtype == "string":
|
||
|
# StringArray/ArrowStringArray depending on pd.options.mode.string_storage
|
||
|
return StringDtype().construct_array_type()._from_sequence(data, copy=copy)
|
||
|
|
||
|
elif inferred_dtype == "integer":
|
||
|
return IntegerArray._from_sequence(data, copy=copy)
|
||
|
|
||
|
elif (
|
||
|
inferred_dtype in ("floating", "mixed-integer-float")
|
||
|
and getattr(data, "dtype", None) != np.float16
|
||
|
):
|
||
|
# GH#44715 Exclude np.float16 bc FloatingArray does not support it;
|
||
|
# we will fall back to PandasArray.
|
||
|
return FloatingArray._from_sequence(data, copy=copy)
|
||
|
|
||
|
elif inferred_dtype == "boolean":
|
||
|
return BooleanArray._from_sequence(data, copy=copy)
|
||
|
|
||
|
# Pandas overrides NumPy for
|
||
|
# 1. datetime64[ns]
|
||
|
# 2. timedelta64[ns]
|
||
|
# so that a DatetimeArray is returned.
|
||
|
if is_datetime64_ns_dtype(dtype):
|
||
|
return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
|
||
|
elif is_timedelta64_ns_dtype(dtype):
|
||
|
return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)
|
||
|
|
||
|
return PandasArray._from_sequence(data, dtype=dtype, copy=copy)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def extract_array(
|
||
|
obj: Series | Index, extract_numpy: bool = ..., extract_range: bool = ...
|
||
|
) -> ArrayLike:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def extract_array(
|
||
|
obj: T, extract_numpy: bool = ..., extract_range: bool = ...
|
||
|
) -> T | ArrayLike:
|
||
|
...
|
||
|
|
||
|
|
||
|
def extract_array(
|
||
|
obj: T, extract_numpy: bool = False, extract_range: bool = False
|
||
|
) -> T | ArrayLike:
|
||
|
"""
|
||
|
Extract the ndarray or ExtensionArray from a Series or Index.
|
||
|
|
||
|
For all other types, `obj` is just returned as is.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obj : object
|
||
|
For Series / Index, the underlying ExtensionArray is unboxed.
|
||
|
|
||
|
extract_numpy : bool, default False
|
||
|
Whether to extract the ndarray from a PandasArray.
|
||
|
|
||
|
extract_range : bool, default False
|
||
|
If we have a RangeIndex, return range._values if True
|
||
|
(which is a materialized integer ndarray), otherwise return unchanged.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
arr : object
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> extract_array(pd.Series(['a', 'b', 'c'], dtype='category'))
|
||
|
['a', 'b', 'c']
|
||
|
Categories (3, object): ['a', 'b', 'c']
|
||
|
|
||
|
Other objects like lists, arrays, and DataFrames are just passed through.
|
||
|
|
||
|
>>> extract_array([1, 2, 3])
|
||
|
[1, 2, 3]
|
||
|
|
||
|
For an ndarray-backed Series / Index the ndarray is returned.
|
||
|
|
||
|
>>> extract_array(pd.Series([1, 2, 3]))
|
||
|
array([1, 2, 3])
|
||
|
|
||
|
To extract all the way down to the ndarray, pass ``extract_numpy=True``.
|
||
|
|
||
|
>>> extract_array(pd.Series([1, 2, 3]), extract_numpy=True)
|
||
|
array([1, 2, 3])
|
||
|
"""
|
||
|
if isinstance(obj, (ABCIndex, ABCSeries)):
|
||
|
if isinstance(obj, ABCRangeIndex):
|
||
|
if extract_range:
|
||
|
return obj._values
|
||
|
# https://github.com/python/mypy/issues/1081
|
||
|
# error: Incompatible return value type (got "RangeIndex", expected
|
||
|
# "Union[T, Union[ExtensionArray, ndarray[Any, Any]]]")
|
||
|
return obj # type: ignore[return-value]
|
||
|
|
||
|
return obj._values
|
||
|
|
||
|
elif extract_numpy and isinstance(obj, ABCPandasArray):
|
||
|
return obj.to_numpy()
|
||
|
|
||
|
return obj
|
||
|
|
||
|
|
||
|
def ensure_wrapped_if_datetimelike(arr):
|
||
|
"""
|
||
|
Wrap datetime64 and timedelta64 ndarrays in DatetimeArray/TimedeltaArray.
|
||
|
"""
|
||
|
if isinstance(arr, np.ndarray):
|
||
|
if arr.dtype.kind == "M":
|
||
|
from pandas.core.arrays import DatetimeArray
|
||
|
|
||
|
return DatetimeArray._from_sequence(arr)
|
||
|
|
||
|
elif arr.dtype.kind == "m":
|
||
|
from pandas.core.arrays import TimedeltaArray
|
||
|
|
||
|
return TimedeltaArray._from_sequence(arr)
|
||
|
|
||
|
return arr
|
||
|
|
||
|
|
||
|
def sanitize_masked_array(data: ma.MaskedArray) -> np.ndarray:
|
||
|
"""
|
||
|
Convert numpy MaskedArray to ensure mask is softened.
|
||
|
"""
|
||
|
mask = ma.getmaskarray(data)
|
||
|
if mask.any():
|
||
|
data, fill_value = maybe_upcast(data, copy=True)
|
||
|
data.soften_mask() # set hardmask False if it was True
|
||
|
data[mask] = fill_value
|
||
|
else:
|
||
|
data = data.copy()
|
||
|
return data
|
||
|
|
||
|
|
||
|
def sanitize_array(
|
||
|
data,
|
||
|
index: Index | None,
|
||
|
dtype: DtypeObj | None = None,
|
||
|
copy: bool = False,
|
||
|
raise_cast_failure: bool = True,
|
||
|
*,
|
||
|
allow_2d: bool = False,
|
||
|
) -> ArrayLike:
|
||
|
"""
|
||
|
Sanitize input data to an ndarray or ExtensionArray, copy if specified,
|
||
|
coerce to the dtype if specified.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : Any
|
||
|
index : Index or None, default None
|
||
|
dtype : np.dtype, ExtensionDtype, or None, default None
|
||
|
copy : bool, default False
|
||
|
raise_cast_failure : bool, default True
|
||
|
allow_2d : bool, default False
|
||
|
If False, raise if we have a 2D Arraylike.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
np.ndarray or ExtensionArray
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
raise_cast_failure=False is only intended to be True when called from the
|
||
|
DataFrame constructor, as the dtype keyword there may be interpreted as only
|
||
|
applying to a subset of columns, see GH#24435.
|
||
|
"""
|
||
|
if isinstance(data, ma.MaskedArray):
|
||
|
data = sanitize_masked_array(data)
|
||
|
|
||
|
if isinstance(dtype, PandasDtype):
|
||
|
# Avoid ending up with a PandasArray
|
||
|
dtype = dtype.numpy_dtype
|
||
|
|
||
|
# extract ndarray or ExtensionArray, ensure we have no PandasArray
|
||
|
data = extract_array(data, extract_numpy=True, extract_range=True)
|
||
|
|
||
|
if isinstance(data, np.ndarray) and data.ndim == 0:
|
||
|
if dtype is None:
|
||
|
dtype = data.dtype
|
||
|
data = lib.item_from_zerodim(data)
|
||
|
elif isinstance(data, range):
|
||
|
# GH#16804
|
||
|
data = range_to_ndarray(data)
|
||
|
copy = False
|
||
|
|
||
|
if not is_list_like(data):
|
||
|
if index is None:
|
||
|
raise ValueError("index must be specified when data is not list-like")
|
||
|
data = construct_1d_arraylike_from_scalar(data, len(index), dtype)
|
||
|
return data
|
||
|
|
||
|
# GH#846
|
||
|
if isinstance(data, np.ndarray):
|
||
|
if isinstance(data, np.matrix):
|
||
|
data = data.A
|
||
|
|
||
|
if dtype is not None and is_float_dtype(data.dtype) and is_integer_dtype(dtype):
|
||
|
# possibility of nan -> garbage
|
||
|
try:
|
||
|
# GH 47391 numpy > 1.24 will raise a RuntimeError for nan -> int
|
||
|
# casting aligning with IntCastingNaNError below
|
||
|
with np.errstate(invalid="ignore"):
|
||
|
subarr = _try_cast(data, dtype, copy, True)
|
||
|
except IntCastingNaNError:
|
||
|
warnings.warn(
|
||
|
"In a future version, passing float-dtype values containing NaN "
|
||
|
"and an integer dtype will raise IntCastingNaNError "
|
||
|
"(subclass of ValueError) instead of silently ignoring the "
|
||
|
"passed dtype. To retain the old behavior, call Series(arr) or "
|
||
|
"DataFrame(arr) without passing a dtype.",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
subarr = np.array(data, copy=copy)
|
||
|
except ValueError:
|
||
|
if not raise_cast_failure:
|
||
|
# i.e. called via DataFrame constructor
|
||
|
warnings.warn(
|
||
|
"In a future version, passing float-dtype values and an "
|
||
|
"integer dtype to DataFrame will retain floating dtype "
|
||
|
"if they cannot be cast losslessly (matching Series behavior). "
|
||
|
"To retain the old behavior, use DataFrame(data).astype(dtype)",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
# GH#40110 until the deprecation is enforced, we _dont_
|
||
|
# ignore the dtype for DataFrame, and _do_ cast even though
|
||
|
# it is lossy.
|
||
|
dtype = cast(np.dtype, dtype)
|
||
|
return np.array(data, dtype=dtype, copy=copy)
|
||
|
|
||
|
# We ignore the dtype arg and return floating values,
|
||
|
# e.g. test_constructor_floating_data_int_dtype
|
||
|
# TODO: where is the discussion that documents the reason for this?
|
||
|
subarr = np.array(data, copy=copy)
|
||
|
else:
|
||
|
# we will try to copy by-definition here
|
||
|
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
|
||
|
|
||
|
elif isinstance(data, ABCExtensionArray):
|
||
|
# it is already ensured above this is not a PandasArray
|
||
|
subarr = data
|
||
|
|
||
|
if dtype is not None:
|
||
|
subarr = subarr.astype(dtype, copy=copy)
|
||
|
elif copy:
|
||
|
subarr = subarr.copy()
|
||
|
|
||
|
else:
|
||
|
if isinstance(data, (set, frozenset)):
|
||
|
# Raise only for unordered sets, e.g., not for dict_keys
|
||
|
raise TypeError(f"'{type(data).__name__}' type is unordered")
|
||
|
|
||
|
# materialize e.g. generators, convert e.g. tuples, abc.ValueView
|
||
|
if hasattr(data, "__array__"):
|
||
|
# e.g. dask array GH#38645
|
||
|
data = np.array(data, copy=copy)
|
||
|
else:
|
||
|
data = list(data)
|
||
|
|
||
|
if dtype is not None or len(data) == 0:
|
||
|
try:
|
||
|
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
|
||
|
except ValueError:
|
||
|
if is_integer_dtype(dtype):
|
||
|
casted = np.array(data, copy=False)
|
||
|
if casted.dtype.kind == "f":
|
||
|
# GH#40110 match the behavior we have if we passed
|
||
|
# a ndarray[float] to begin with
|
||
|
return sanitize_array(
|
||
|
casted,
|
||
|
index,
|
||
|
dtype,
|
||
|
copy=False,
|
||
|
raise_cast_failure=raise_cast_failure,
|
||
|
allow_2d=allow_2d,
|
||
|
)
|
||
|
else:
|
||
|
raise
|
||
|
else:
|
||
|
raise
|
||
|
else:
|
||
|
subarr = maybe_convert_platform(data)
|
||
|
if subarr.dtype == object:
|
||
|
subarr = cast(np.ndarray, subarr)
|
||
|
subarr = maybe_infer_to_datetimelike(subarr)
|
||
|
|
||
|
subarr = _sanitize_ndim(subarr, data, dtype, index, allow_2d=allow_2d)
|
||
|
|
||
|
if isinstance(subarr, np.ndarray):
|
||
|
# at this point we should have dtype be None or subarr.dtype == dtype
|
||
|
dtype = cast(np.dtype, dtype)
|
||
|
subarr = _sanitize_str_dtypes(subarr, data, dtype, copy)
|
||
|
|
||
|
return subarr
|
||
|
|
||
|
|
||
|
def range_to_ndarray(rng: range) -> np.ndarray:
|
||
|
"""
|
||
|
Cast a range object to ndarray.
|
||
|
"""
|
||
|
# GH#30171 perf avoid realizing range as a list in np.array
|
||
|
try:
|
||
|
arr = np.arange(rng.start, rng.stop, rng.step, dtype="int64")
|
||
|
except OverflowError:
|
||
|
# GH#30173 handling for ranges that overflow int64
|
||
|
if (rng.start >= 0 and rng.step > 0) or (rng.stop >= 0 and rng.step < 0):
|
||
|
try:
|
||
|
arr = np.arange(rng.start, rng.stop, rng.step, dtype="uint64")
|
||
|
except OverflowError:
|
||
|
arr = construct_1d_object_array_from_listlike(list(rng))
|
||
|
else:
|
||
|
arr = construct_1d_object_array_from_listlike(list(rng))
|
||
|
return arr
|
||
|
|
||
|
|
||
|
def _sanitize_ndim(
|
||
|
result: ArrayLike,
|
||
|
data,
|
||
|
dtype: DtypeObj | None,
|
||
|
index: Index | None,
|
||
|
*,
|
||
|
allow_2d: bool = False,
|
||
|
) -> ArrayLike:
|
||
|
"""
|
||
|
Ensure we have a 1-dimensional result array.
|
||
|
"""
|
||
|
if getattr(result, "ndim", 0) == 0:
|
||
|
raise ValueError("result should be arraylike with ndim > 0")
|
||
|
|
||
|
elif result.ndim == 1:
|
||
|
# the result that we want
|
||
|
result = _maybe_repeat(result, index)
|
||
|
|
||
|
elif result.ndim > 1:
|
||
|
if isinstance(data, np.ndarray):
|
||
|
if allow_2d:
|
||
|
return result
|
||
|
raise ValueError("Data must be 1-dimensional")
|
||
|
if is_object_dtype(dtype) and isinstance(dtype, ExtensionDtype):
|
||
|
# i.e. PandasDtype("O")
|
||
|
|
||
|
result = com.asarray_tuplesafe(data, dtype=np.dtype("object"))
|
||
|
cls = dtype.construct_array_type()
|
||
|
result = cls._from_sequence(result, dtype=dtype)
|
||
|
else:
|
||
|
# error: Argument "dtype" to "asarray_tuplesafe" has incompatible type
|
||
|
# "Union[dtype[Any], ExtensionDtype, None]"; expected "Union[str,
|
||
|
# dtype[Any], None]"
|
||
|
result = com.asarray_tuplesafe(data, dtype=dtype) # type: ignore[arg-type]
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _sanitize_str_dtypes(
|
||
|
result: np.ndarray, data, dtype: np.dtype | None, copy: bool
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Ensure we have a dtype that is supported by pandas.
|
||
|
"""
|
||
|
|
||
|
# This is to prevent mixed-type Series getting all casted to
|
||
|
# NumPy string type, e.g. NaN --> '-1#IND'.
|
||
|
if issubclass(result.dtype.type, str):
|
||
|
# GH#16605
|
||
|
# If not empty convert the data to dtype
|
||
|
# GH#19853: If data is a scalar, result has already the result
|
||
|
if not lib.is_scalar(data):
|
||
|
if not np.all(isna(data)):
|
||
|
data = np.array(data, dtype=dtype, copy=False)
|
||
|
result = np.array(data, dtype=object, copy=copy)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _maybe_repeat(arr: ArrayLike, index: Index | None) -> ArrayLike:
|
||
|
"""
|
||
|
If we have a length-1 array and an index describing how long we expect
|
||
|
the result to be, repeat the array.
|
||
|
"""
|
||
|
if index is not None:
|
||
|
if 1 == len(arr) != len(index):
|
||
|
arr = arr.repeat(len(index))
|
||
|
return arr
|
||
|
|
||
|
|
||
|
def _try_cast(
|
||
|
arr: list | np.ndarray,
|
||
|
dtype: DtypeObj | None,
|
||
|
copy: bool,
|
||
|
raise_cast_failure: bool,
|
||
|
) -> ArrayLike:
|
||
|
"""
|
||
|
Convert input to numpy ndarray and optionally cast to a given dtype.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ndarray or list
|
||
|
Excludes: ExtensionArray, Series, Index.
|
||
|
dtype : np.dtype, ExtensionDtype or None
|
||
|
copy : bool
|
||
|
If False, don't copy the data if not needed.
|
||
|
raise_cast_failure : bool
|
||
|
If True, and if a dtype is specified, raise errors during casting.
|
||
|
Otherwise an object array is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
np.ndarray or ExtensionArray
|
||
|
"""
|
||
|
is_ndarray = isinstance(arr, np.ndarray)
|
||
|
|
||
|
if dtype is None:
|
||
|
# perf shortcut as this is the most common case
|
||
|
if is_ndarray:
|
||
|
arr = cast(np.ndarray, arr)
|
||
|
if arr.dtype != object:
|
||
|
return sanitize_to_nanoseconds(arr, copy=copy)
|
||
|
|
||
|
out = maybe_infer_to_datetimelike(arr)
|
||
|
if out is arr and copy:
|
||
|
out = out.copy()
|
||
|
return out
|
||
|
|
||
|
else:
|
||
|
# i.e. list
|
||
|
varr = np.array(arr, copy=False)
|
||
|
# filter out cases that we _dont_ want to go through
|
||
|
# maybe_infer_to_datetimelike
|
||
|
if varr.dtype != object or varr.size == 0:
|
||
|
return varr
|
||
|
return maybe_infer_to_datetimelike(varr)
|
||
|
|
||
|
elif isinstance(dtype, ExtensionDtype):
|
||
|
# create an extension array from its dtype
|
||
|
if isinstance(dtype, DatetimeTZDtype):
|
||
|
# We can't go through _from_sequence because it handles dt64naive
|
||
|
# data differently; _from_sequence treats naive as wall times,
|
||
|
# while maybe_cast_to_datetime treats it as UTC
|
||
|
# see test_maybe_promote_any_numpy_dtype_with_datetimetz
|
||
|
# TODO(2.0): with deprecations enforced, should be able to remove
|
||
|
# special case.
|
||
|
return maybe_cast_to_datetime(arr, dtype)
|
||
|
# TODO: copy?
|
||
|
|
||
|
array_type = dtype.construct_array_type()._from_sequence
|
||
|
subarr = array_type(arr, dtype=dtype, copy=copy)
|
||
|
return subarr
|
||
|
|
||
|
elif is_object_dtype(dtype):
|
||
|
if not is_ndarray:
|
||
|
subarr = construct_1d_object_array_from_listlike(arr)
|
||
|
return subarr
|
||
|
return ensure_wrapped_if_datetimelike(arr).astype(dtype, copy=copy)
|
||
|
|
||
|
elif dtype.kind == "U":
|
||
|
# TODO: test cases with arr.dtype.kind in ["m", "M"]
|
||
|
if is_ndarray:
|
||
|
arr = cast(np.ndarray, arr)
|
||
|
shape = arr.shape
|
||
|
if arr.ndim > 1:
|
||
|
arr = arr.ravel()
|
||
|
else:
|
||
|
shape = (len(arr),)
|
||
|
return lib.ensure_string_array(arr, convert_na_value=False, copy=copy).reshape(
|
||
|
shape
|
||
|
)
|
||
|
|
||
|
elif dtype.kind in ["m", "M"]:
|
||
|
return maybe_cast_to_datetime(arr, dtype)
|
||
|
|
||
|
try:
|
||
|
# GH#15832: Check if we are requesting a numeric dtype and
|
||
|
# that we can convert the data to the requested dtype.
|
||
|
if is_integer_dtype(dtype):
|
||
|
# this will raise if we have e.g. floats
|
||
|
|
||
|
subarr = maybe_cast_to_integer_array(arr, dtype)
|
||
|
else:
|
||
|
# 4 tests fail if we move this to a try/except/else; see
|
||
|
# test_constructor_compound_dtypes, test_constructor_cast_failure
|
||
|
# test_constructor_dict_cast2, test_loc_setitem_dtype
|
||
|
subarr = np.array(arr, dtype=dtype, copy=copy)
|
||
|
|
||
|
except (ValueError, TypeError):
|
||
|
if raise_cast_failure:
|
||
|
raise
|
||
|
else:
|
||
|
# we only get here with raise_cast_failure False, which means
|
||
|
# called via the DataFrame constructor
|
||
|
# GH#24435
|
||
|
warnings.warn(
|
||
|
f"Could not cast to {dtype}, falling back to object. This "
|
||
|
"behavior is deprecated. In a future version, when a dtype is "
|
||
|
"passed to 'DataFrame', either all columns will be cast to that "
|
||
|
"dtype, or a TypeError will be raised.",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
subarr = np.array(arr, dtype=object, copy=copy)
|
||
|
return subarr
|
||
|
|
||
|
|
||
|
def is_empty_data(data: Any) -> bool:
|
||
|
"""
|
||
|
Utility to check if a Series is instantiated with empty data,
|
||
|
which does not contain dtype information.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : array-like, Iterable, dict, or scalar value
|
||
|
Contains data stored in Series.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
"""
|
||
|
is_none = data is None
|
||
|
is_list_like_without_dtype = is_list_like(data) and not hasattr(data, "dtype")
|
||
|
is_simple_empty = is_list_like_without_dtype and not data
|
||
|
return is_none or is_simple_empty
|
||
|
|
||
|
|
||
|
def create_series_with_explicit_dtype(
|
||
|
data: Any = None,
|
||
|
index: ArrayLike | Index | None = None,
|
||
|
dtype: Dtype | None = None,
|
||
|
name: str | None = None,
|
||
|
copy: bool = False,
|
||
|
fastpath: bool = False,
|
||
|
dtype_if_empty: Dtype = object,
|
||
|
) -> Series:
|
||
|
"""
|
||
|
Helper to pass an explicit dtype when instantiating an empty Series.
|
||
|
|
||
|
This silences a DeprecationWarning described in GitHub-17261.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : Mirrored from Series.__init__
|
||
|
index : Mirrored from Series.__init__
|
||
|
dtype : Mirrored from Series.__init__
|
||
|
name : Mirrored from Series.__init__
|
||
|
copy : Mirrored from Series.__init__
|
||
|
fastpath : Mirrored from Series.__init__
|
||
|
dtype_if_empty : str, numpy.dtype, or ExtensionDtype
|
||
|
This dtype will be passed explicitly if an empty Series will
|
||
|
be instantiated.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series
|
||
|
"""
|
||
|
from pandas.core.series import Series
|
||
|
|
||
|
if is_empty_data(data) and dtype is None:
|
||
|
dtype = dtype_if_empty
|
||
|
return Series(
|
||
|
data=data, index=index, dtype=dtype, name=name, copy=copy, fastpath=fastpath
|
||
|
)
|