aoc-2022/venv/Lib/site-packages/pandas/_libs/tslibs/conversion.pyx

656 lines
19 KiB
Cython
Raw Normal View History

cimport cython
import warnings
import numpy as np
from pandas.util._exceptions import find_stack_level
cimport numpy as cnp
from cpython.object cimport PyObject
from numpy cimport (
int32_t,
int64_t,
intp_t,
ndarray,
)
cnp.import_array()
import pytz
# stdlib datetime imports
from cpython.datetime cimport (
PyDate_Check,
PyDateTime_Check,
datetime,
import_datetime,
time,
tzinfo,
)
import_datetime()
from pandas._libs.tslibs.base cimport ABCTimestamp
from pandas._libs.tslibs.dtypes cimport (
abbrev_to_npy_unit,
periods_per_second,
)
from pandas._libs.tslibs.np_datetime cimport (
NPY_DATETIMEUNIT,
NPY_FR_ns,
astype_overflowsafe,
check_dts_bounds,
dtstruct_to_dt64,
get_datetime64_unit,
get_datetime64_value,
get_implementation_bounds,
get_unit_from_dtype,
npy_datetime,
npy_datetimestruct,
npy_datetimestruct_to_datetime,
pandas_datetime_to_datetimestruct,
pydatetime_to_dt64,
pydatetime_to_dtstruct,
string_to_dts,
)
from pandas._libs.tslibs.np_datetime import (
OutOfBoundsDatetime,
OutOfBoundsTimedelta,
)
from pandas._libs.tslibs.timezones cimport (
get_utcoffset,
is_utc,
maybe_get_tz,
tz_compare,
utc_pytz as UTC,
)
from pandas._libs.tslibs.util cimport (
is_datetime64_object,
is_float_object,
is_integer_object,
)
from pandas._libs.tslibs.parsing import parse_datetime_string
from pandas._libs.tslibs.nattype cimport (
NPY_NAT,
c_NaT as NaT,
c_nat_strings as nat_strings,
checknull_with_nat,
)
from pandas._libs.tslibs.tzconversion cimport (
Localizer,
tz_localize_to_utc_single,
)
# ----------------------------------------------------------------------
# Constants
DT64NS_DTYPE = np.dtype('M8[ns]')
TD64NS_DTYPE = np.dtype('m8[ns]')
# ----------------------------------------------------------------------
# Unit Conversion Helpers
cdef inline int64_t cast_from_unit(object ts, str unit) except? -1:
"""
Return a casting of the unit represented to nanoseconds
round the fractional part of a float to our precision, p.
Parameters
----------
ts : int, float, or None
unit : str
Returns
-------
int64_t
"""
cdef:
int64_t m
int p
m, p = precision_from_unit(unit)
# just give me the unit back
if ts is None:
return m
# cast the unit, multiply base/frace separately
# to avoid precision issues from float -> int
base = <int64_t>ts
frac = ts - base
if p:
frac = round(frac, p)
return <int64_t>(base * m) + <int64_t>(frac * m)
cpdef inline (int64_t, int) precision_from_unit(str unit):
"""
Return a casting of the unit represented to nanoseconds + the precision
to round the fractional part.
Notes
-----
The caller is responsible for ensuring that the default value of "ns"
takes the place of None.
"""
cdef:
int64_t m
int p
NPY_DATETIMEUNIT reso = abbrev_to_npy_unit(unit)
if reso == NPY_DATETIMEUNIT.NPY_FR_Y:
# each 400 years we have 97 leap years, for an average of 97/400=.2425
# extra days each year. We get 31556952 by writing
# 3600*24*365.2425=31556952
m = 1_000_000_000 * 31556952
p = 9
elif reso == NPY_DATETIMEUNIT.NPY_FR_M:
# 2629746 comes from dividing the "Y" case by 12.
m = 1_000_000_000 * 2629746
p = 9
elif reso == NPY_DATETIMEUNIT.NPY_FR_W:
m = 1_000_000_000 * 3600 * 24 * 7
p = 9
elif reso == NPY_DATETIMEUNIT.NPY_FR_D:
m = 1_000_000_000 * 3600 * 24
p = 9
elif reso == NPY_DATETIMEUNIT.NPY_FR_h:
m = 1_000_000_000 * 3600
p = 9
elif reso == NPY_DATETIMEUNIT.NPY_FR_m:
m = 1_000_000_000 * 60
p = 9
elif reso == NPY_DATETIMEUNIT.NPY_FR_s:
m = 1_000_000_000
p = 9
elif reso == NPY_DATETIMEUNIT.NPY_FR_ms:
m = 1_000_000
p = 6
elif reso == NPY_DATETIMEUNIT.NPY_FR_us:
m = 1000
p = 3
elif reso == NPY_DATETIMEUNIT.NPY_FR_ns or reso == NPY_DATETIMEUNIT.NPY_FR_GENERIC:
m = 1
p = 0
else:
raise ValueError(f"cannot cast unit {unit}")
return m, p
cdef inline int64_t get_datetime64_nanos(object val) except? -1:
"""
Extract the value and unit from a np.datetime64 object, then convert the
value to nanoseconds if necessary.
"""
cdef:
npy_datetimestruct dts
NPY_DATETIMEUNIT unit
npy_datetime ival
ival = get_datetime64_value(val)
if ival == NPY_NAT:
return NPY_NAT
unit = get_datetime64_unit(val)
if unit != NPY_FR_ns:
pandas_datetime_to_datetimestruct(ival, unit, &dts)
check_dts_bounds(&dts)
ival = dtstruct_to_dt64(&dts)
return ival
# ----------------------------------------------------------------------
# _TSObject Conversion
# lightweight C object to hold datetime & int64 pair
cdef class _TSObject:
# cdef:
# npy_datetimestruct dts # npy_datetimestruct
# int64_t value # numpy dt64
# tzinfo tzinfo
# bint fold
def __cinit__(self):
# GH 25057. As per PEP 495, set fold to 0 by default
self.fold = 0
cdef _TSObject convert_to_tsobject(object ts, tzinfo tz, str unit,
bint dayfirst, bint yearfirst, int32_t nanos=0):
"""
Extract datetime and int64 from any of:
- np.int64 (with unit providing a possible modifier)
- np.datetime64
- a float (with unit providing a possible modifier)
- python int or long object (with unit providing a possible modifier)
- iso8601 string object
- python datetime object
- another timestamp object
Raises
------
OutOfBoundsDatetime : ts cannot be converted within implementation bounds
"""
cdef:
_TSObject obj
obj = _TSObject()
if isinstance(ts, str):
return _convert_str_to_tsobject(ts, tz, unit, dayfirst, yearfirst)
if ts is None or ts is NaT:
obj.value = NPY_NAT
elif is_datetime64_object(ts):
obj.value = get_datetime64_nanos(ts)
if obj.value != NPY_NAT:
pandas_datetime_to_datetimestruct(obj.value, NPY_FR_ns, &obj.dts)
elif is_integer_object(ts):
try:
ts = <int64_t>ts
except OverflowError:
# GH#26651 re-raise as OutOfBoundsDatetime
raise OutOfBoundsDatetime(f"Out of bounds nanosecond timestamp {ts}")
if ts == NPY_NAT:
obj.value = NPY_NAT
else:
if unit in ["Y", "M"]:
# GH#47266 cast_from_unit leads to weird results e.g. with "Y"
# and 150 we'd get 2120-01-01 09:00:00
ts = np.datetime64(ts, unit)
return convert_to_tsobject(ts, tz, None, False, False)
ts = ts * cast_from_unit(None, unit)
obj.value = ts
pandas_datetime_to_datetimestruct(ts, NPY_FR_ns, &obj.dts)
elif is_float_object(ts):
if ts != ts or ts == NPY_NAT:
obj.value = NPY_NAT
else:
if unit in ["Y", "M"]:
if ts == int(ts):
# GH#47266 Avoid cast_from_unit, which would give weird results
# e.g. with "Y" and 150.0 we'd get 2120-01-01 09:00:00
return convert_to_tsobject(int(ts), tz, unit, False, False)
else:
# GH#47267 it is clear that 2 "M" corresponds to 1970-02-01,
# but not clear what 2.5 "M" corresponds to, so we will
# disallow that case.
warnings.warn(
"Conversion of non-round float with unit={unit} is ambiguous "
"and will raise in a future version.",
FutureWarning,
stacklevel=find_stack_level(),
)
ts = cast_from_unit(ts, unit)
obj.value = ts
pandas_datetime_to_datetimestruct(ts, NPY_FR_ns, &obj.dts)
elif PyDateTime_Check(ts):
return convert_datetime_to_tsobject(ts, tz, nanos)
elif PyDate_Check(ts):
# Keep the converter same as PyDateTime's
ts = datetime.combine(ts, time())
return convert_datetime_to_tsobject(ts, tz)
else:
from .period import Period
if isinstance(ts, Period):
raise ValueError("Cannot convert Period to Timestamp "
"unambiguously. Use to_timestamp")
raise TypeError(f'Cannot convert input [{ts}] of type {type(ts)} to '
f'Timestamp')
maybe_localize_tso(obj, tz, NPY_FR_ns)
return obj
cdef maybe_localize_tso(_TSObject obj, tzinfo tz, NPY_DATETIMEUNIT reso):
if tz is not None:
_localize_tso(obj, tz, reso)
if obj.value != NPY_NAT:
# check_overflows needs to run after _localize_tso
check_dts_bounds(&obj.dts, reso)
check_overflows(obj, reso)
cdef _TSObject convert_datetime_to_tsobject(
datetime ts,
tzinfo tz,
int32_t nanos=0,
NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
"""
Convert a datetime (or Timestamp) input `ts`, along with optional timezone
object `tz` to a _TSObject.
The optional argument `nanos` allows for cases where datetime input
needs to be supplemented with higher-precision information.
Parameters
----------
ts : datetime or Timestamp
Value to be converted to _TSObject
tz : tzinfo or None
timezone for the timezone-aware output
nanos : int32_t, default is 0
nanoseconds supplement the precision of the datetime input ts
reso : NPY_DATETIMEUNIT, default NPY_FR_ns
Returns
-------
obj : _TSObject
"""
cdef:
_TSObject obj = _TSObject()
int64_t pps
obj.fold = ts.fold
if tz is not None:
tz = maybe_get_tz(tz)
if ts.tzinfo is not None:
# Convert the current timezone to the passed timezone
ts = ts.astimezone(tz)
pydatetime_to_dtstruct(ts, &obj.dts)
obj.tzinfo = ts.tzinfo
elif not is_utc(tz):
ts = _localize_pydatetime(ts, tz)
pydatetime_to_dtstruct(ts, &obj.dts)
obj.tzinfo = ts.tzinfo
else:
# UTC
pydatetime_to_dtstruct(ts, &obj.dts)
obj.tzinfo = tz
else:
pydatetime_to_dtstruct(ts, &obj.dts)
obj.tzinfo = ts.tzinfo
if isinstance(ts, ABCTimestamp):
obj.dts.ps = ts.nanosecond * 1000
if nanos:
obj.dts.ps = nanos * 1000
obj.value = npy_datetimestruct_to_datetime(reso, &obj.dts)
if obj.tzinfo is not None and not is_utc(obj.tzinfo):
offset = get_utcoffset(obj.tzinfo, ts)
pps = periods_per_second(reso)
obj.value -= int(offset.total_seconds() * pps)
check_dts_bounds(&obj.dts, reso)
check_overflows(obj, reso)
return obj
cdef _TSObject _create_tsobject_tz_using_offset(npy_datetimestruct dts,
int tzoffset, tzinfo tz=None):
"""
Convert a datetimestruct `dts`, along with initial timezone offset
`tzoffset` to a _TSObject (with timezone object `tz` - optional).
Parameters
----------
dts: npy_datetimestruct
tzoffset: int
tz : tzinfo or None
timezone for the timezone-aware output.
Returns
-------
obj : _TSObject
"""
cdef:
_TSObject obj = _TSObject()
int64_t value # numpy dt64
datetime dt
Py_ssize_t pos
value = dtstruct_to_dt64(&dts)
obj.dts = dts
obj.tzinfo = pytz.FixedOffset(tzoffset)
obj.value = tz_localize_to_utc_single(value, obj.tzinfo)
if tz is None:
check_overflows(obj, NPY_FR_ns)
return obj
cdef:
Localizer info = Localizer(tz, NPY_FR_ns)
# Infer fold from offset-adjusted obj.value
# see PEP 495 https://www.python.org/dev/peps/pep-0495/#the-fold-attribute
if info.use_utc:
pass
elif info.use_tzlocal:
info.utc_val_to_local_val(obj.value, &pos, &obj.fold)
elif info.use_dst and not info.use_pytz:
# i.e. dateutil
info.utc_val_to_local_val(obj.value, &pos, &obj.fold)
# Keep the converter same as PyDateTime's
dt = datetime(obj.dts.year, obj.dts.month, obj.dts.day,
obj.dts.hour, obj.dts.min, obj.dts.sec,
obj.dts.us, obj.tzinfo, fold=obj.fold)
obj = convert_datetime_to_tsobject(
dt, tz, nanos=obj.dts.ps // 1000)
return obj
cdef _TSObject _convert_str_to_tsobject(object ts, tzinfo tz, str unit,
bint dayfirst=False,
bint yearfirst=False):
"""
Convert a string input `ts`, along with optional timezone object`tz`
to a _TSObject.
The optional arguments `dayfirst` and `yearfirst` are passed to the
dateutil parser.
Parameters
----------
ts : str
Value to be converted to _TSObject
tz : tzinfo or None
timezone for the timezone-aware output
unit : str or None
dayfirst : bool, default False
When parsing an ambiguous date string, interpret e.g. "3/4/1975" as
April 3, as opposed to the standard US interpretation March 4.
yearfirst : bool, default False
When parsing an ambiguous date string, interpret e.g. "01/05/09"
as "May 9, 2001", as opposed to the default "Jan 5, 2009"
Returns
-------
obj : _TSObject
"""
cdef:
npy_datetimestruct dts
int out_local = 0, out_tzoffset = 0, string_to_dts_failed
datetime dt
int64_t ival
NPY_DATETIMEUNIT out_bestunit
if len(ts) == 0 or ts in nat_strings:
ts = NaT
obj = _TSObject()
obj.value = NPY_NAT
obj.tzinfo = tz
return obj
elif ts == 'now':
# Issue 9000, we short-circuit rather than going
# into np_datetime_strings which returns utc
dt = datetime.now(tz)
elif ts == 'today':
# Issue 9000, we short-circuit rather than going
# into np_datetime_strings which returns a normalized datetime
dt = datetime.now(tz)
# equiv: datetime.today().replace(tzinfo=tz)
else:
string_to_dts_failed = string_to_dts(
ts, &dts, &out_bestunit, &out_local,
&out_tzoffset, False
)
if not string_to_dts_failed:
try:
check_dts_bounds(&dts)
if out_local == 1:
return _create_tsobject_tz_using_offset(dts,
out_tzoffset, tz)
else:
ival = dtstruct_to_dt64(&dts)
if tz is not None:
# shift for _localize_tso
ival = tz_localize_to_utc_single(ival, tz,
ambiguous="raise")
return convert_to_tsobject(ival, tz, None, False, False)
except OutOfBoundsDatetime:
# GH#19382 for just-barely-OutOfBounds falling back to dateutil
# parser will return incorrect result because it will ignore
# nanoseconds
raise
except ValueError:
# Fall through to parse_datetime_string
pass
try:
dt = parse_datetime_string(ts, dayfirst=dayfirst,
yearfirst=yearfirst)
except (ValueError, OverflowError):
raise ValueError("could not convert string to Timestamp")
return convert_datetime_to_tsobject(dt, tz)
cdef inline check_overflows(_TSObject obj, NPY_DATETIMEUNIT reso=NPY_FR_ns):
"""
Check that we haven't silently overflowed in timezone conversion
Parameters
----------
obj : _TSObject
reso : NPY_DATETIMEUNIT, default NPY_FR_ns
Returns
-------
None
Raises
------
OutOfBoundsDatetime
"""
# GH#12677
cdef:
npy_datetimestruct lb, ub
get_implementation_bounds(reso, &lb, &ub)
if obj.dts.year == lb.year:
if not (obj.value < 0):
from pandas._libs.tslibs.timestamps import Timestamp
fmt = (f"{obj.dts.year}-{obj.dts.month:02d}-{obj.dts.day:02d} "
f"{obj.dts.hour:02d}:{obj.dts.min:02d}:{obj.dts.sec:02d}")
raise OutOfBoundsDatetime(
f"Converting {fmt} underflows past {Timestamp.min}"
)
elif obj.dts.year == ub.year:
if not (obj.value > 0):
from pandas._libs.tslibs.timestamps import Timestamp
fmt = (f"{obj.dts.year}-{obj.dts.month:02d}-{obj.dts.day:02d} "
f"{obj.dts.hour:02d}:{obj.dts.min:02d}:{obj.dts.sec:02d}")
raise OutOfBoundsDatetime(
f"Converting {fmt} overflows past {Timestamp.max}"
)
# ----------------------------------------------------------------------
# Localization
cdef inline void _localize_tso(_TSObject obj, tzinfo tz, NPY_DATETIMEUNIT reso):
"""
Given the UTC nanosecond timestamp in obj.value, find the wall-clock
representation of that timestamp in the given timezone.
Parameters
----------
obj : _TSObject
tz : tzinfo
reso : NPY_DATETIMEUNIT
Returns
-------
None
Notes
-----
Sets obj.tzinfo inplace, alters obj.dts inplace.
"""
cdef:
int64_t local_val
Py_ssize_t outpos = -1
Localizer info = Localizer(tz, reso)
assert obj.tzinfo is None
if info.use_utc:
pass
elif obj.value == NPY_NAT:
pass
else:
local_val = info.utc_val_to_local_val(obj.value, &outpos, &obj.fold)
if info.use_pytz:
# infer we went through a pytz path, will have outpos!=-1
tz = tz._tzinfos[tz._transition_info[outpos]]
pandas_datetime_to_datetimestruct(local_val, reso, &obj.dts)
obj.tzinfo = tz
cdef inline datetime _localize_pydatetime(datetime dt, tzinfo tz):
"""
Take a datetime/Timestamp in UTC and localizes to timezone tz.
NB: Unlike the public version, this treats datetime and Timestamp objects
identically, i.e. discards nanos from Timestamps.
It also assumes that the `tz` input is not None.
"""
try:
# datetime.replace with pytz may be incorrect result
return tz.localize(dt)
except AttributeError:
return dt.replace(tzinfo=tz)
cpdef inline datetime localize_pydatetime(datetime dt, tzinfo tz):
"""
Take a datetime/Timestamp in UTC and localizes to timezone tz.
Parameters
----------
dt : datetime or Timestamp
tz : tzinfo or None
Returns
-------
localized : datetime or Timestamp
"""
if tz is None:
return dt
elif isinstance(dt, ABCTimestamp):
return dt.tz_localize(tz)
return _localize_pydatetime(dt, tz)