aoc-2022/venv/Lib/site-packages/pandas/_libs/lib.pyi

234 lines
7.5 KiB
Python
Raw Normal View History

# TODO(npdtypes): Many types specified here can be made more specific/accurate;
# the more specific versions are specified in comments
from typing import (
Any,
Callable,
Final,
Generator,
Hashable,
Literal,
overload,
)
import numpy as np
from pandas._typing import (
ArrayLike,
DtypeObj,
npt,
)
# placeholder until we can specify np.ndarray[object, ndim=2]
ndarray_obj_2d = np.ndarray
from enum import Enum
class _NoDefault(Enum):
no_default = ...
no_default: Final = _NoDefault.no_default
NoDefault = Literal[_NoDefault.no_default]
i8max: int
u8max: int
def item_from_zerodim(val: object) -> object: ...
def infer_dtype(value: object, skipna: bool = ...) -> str: ...
def is_iterator(obj: object) -> bool: ...
def is_scalar(val: object) -> bool: ...
def is_list_like(obj: object, allow_sets: bool = ...) -> bool: ...
def is_period(val: object) -> bool: ...
def is_interval(val: object) -> bool: ...
def is_decimal(val: object) -> bool: ...
def is_complex(val: object) -> bool: ...
def is_bool(val: object) -> bool: ...
def is_integer(val: object) -> bool: ...
def is_float(val: object) -> bool: ...
def is_interval_array(values: np.ndarray) -> bool: ...
def is_datetime64_array(values: np.ndarray) -> bool: ...
def is_timedelta_or_timedelta64_array(values: np.ndarray) -> bool: ...
def is_datetime_with_singletz_array(values: np.ndarray) -> bool: ...
def is_time_array(values: np.ndarray, skipna: bool = ...): ...
def is_date_array(values: np.ndarray, skipna: bool = ...): ...
def is_datetime_array(values: np.ndarray, skipna: bool = ...): ...
def is_string_array(values: np.ndarray, skipna: bool = ...): ...
def is_float_array(values: np.ndarray, skipna: bool = ...): ...
def is_integer_array(values: np.ndarray, skipna: bool = ...): ...
def is_bool_array(values: np.ndarray, skipna: bool = ...): ...
def fast_multiget(mapping: dict, keys: np.ndarray, default=...) -> np.ndarray: ...
def fast_unique_multiple_list_gen(gen: Generator, sort: bool = ...) -> list: ...
def fast_unique_multiple_list(lists: list, sort: bool | None = ...) -> list: ...
def fast_unique_multiple(arrays: list, sort: bool = ...) -> list: ...
def map_infer(
arr: np.ndarray,
f: Callable[[Any], Any],
convert: bool = ...,
ignore_na: bool = ...,
) -> np.ndarray: ...
@overload # both convert_datetime and convert_to_nullable_integer False -> np.ndarray
def maybe_convert_objects(
objects: npt.NDArray[np.object_],
*,
try_float: bool = ...,
safe: bool = ...,
convert_datetime: Literal[False] = ...,
convert_timedelta: bool = ...,
convert_period: Literal[False] = ...,
convert_interval: Literal[False] = ...,
convert_to_nullable_integer: Literal[False] = ...,
dtype_if_all_nat: DtypeObj | None = ...,
) -> np.ndarray: ...
@overload
def maybe_convert_objects(
objects: npt.NDArray[np.object_],
*,
try_float: bool = ...,
safe: bool = ...,
convert_datetime: bool = ...,
convert_timedelta: bool = ...,
convert_period: bool = ...,
convert_interval: bool = ...,
convert_to_nullable_integer: Literal[True] = ...,
dtype_if_all_nat: DtypeObj | None = ...,
) -> ArrayLike: ...
@overload
def maybe_convert_objects(
objects: npt.NDArray[np.object_],
*,
try_float: bool = ...,
safe: bool = ...,
convert_datetime: Literal[True] = ...,
convert_timedelta: bool = ...,
convert_period: bool = ...,
convert_interval: bool = ...,
convert_to_nullable_integer: bool = ...,
dtype_if_all_nat: DtypeObj | None = ...,
) -> ArrayLike: ...
@overload
def maybe_convert_objects(
objects: npt.NDArray[np.object_],
*,
try_float: bool = ...,
safe: bool = ...,
convert_datetime: bool = ...,
convert_timedelta: bool = ...,
convert_period: Literal[True] = ...,
convert_interval: bool = ...,
convert_to_nullable_integer: bool = ...,
dtype_if_all_nat: DtypeObj | None = ...,
) -> ArrayLike: ...
@overload
def maybe_convert_objects(
objects: npt.NDArray[np.object_],
*,
try_float: bool = ...,
safe: bool = ...,
convert_datetime: bool = ...,
convert_timedelta: bool = ...,
convert_period: bool = ...,
convert_interval: bool = ...,
convert_to_nullable_integer: bool = ...,
dtype_if_all_nat: DtypeObj | None = ...,
) -> ArrayLike: ...
@overload
def maybe_convert_numeric(
values: npt.NDArray[np.object_],
na_values: set,
convert_empty: bool = ...,
coerce_numeric: bool = ...,
convert_to_masked_nullable: Literal[False] = ...,
) -> tuple[np.ndarray, None]: ...
@overload
def maybe_convert_numeric(
values: npt.NDArray[np.object_],
na_values: set,
convert_empty: bool = ...,
coerce_numeric: bool = ...,
*,
convert_to_masked_nullable: Literal[True],
) -> tuple[np.ndarray, np.ndarray]: ...
# TODO: restrict `arr`?
def ensure_string_array(
arr,
na_value: object = ...,
convert_na_value: bool = ...,
copy: bool = ...,
skipna: bool = ...,
) -> npt.NDArray[np.object_]: ...
def infer_datetimelike_array(
arr: npt.NDArray[np.object_],
) -> tuple[str, bool]: ...
def convert_nans_to_NA(
arr: npt.NDArray[np.object_],
) -> npt.NDArray[np.object_]: ...
def fast_zip(ndarrays: list) -> npt.NDArray[np.object_]: ...
# TODO: can we be more specific about rows?
def to_object_array_tuples(rows: object) -> ndarray_obj_2d: ...
def tuples_to_object_array(
tuples: npt.NDArray[np.object_],
) -> ndarray_obj_2d: ...
# TODO: can we be more specific about rows?
def to_object_array(rows: object, min_width: int = ...) -> ndarray_obj_2d: ...
def dicts_to_array(dicts: list, columns: list) -> ndarray_obj_2d: ...
def maybe_booleans_to_slice(
mask: npt.NDArray[np.uint8],
) -> slice | npt.NDArray[np.uint8]: ...
def maybe_indices_to_slice(
indices: npt.NDArray[np.intp],
max_len: int,
) -> slice | npt.NDArray[np.intp]: ...
def is_all_arraylike(obj: list) -> bool: ...
# -----------------------------------------------------------------
# Functions which in reality take memoryviews
def memory_usage_of_objects(arr: np.ndarray) -> int: ... # object[:] # np.int64
def map_infer_mask(
arr: np.ndarray,
f: Callable[[Any], Any],
mask: np.ndarray, # const uint8_t[:]
convert: bool = ...,
na_value: Any = ...,
dtype: np.dtype = ...,
) -> np.ndarray: ...
def indices_fast(
index: npt.NDArray[np.intp],
labels: np.ndarray, # const int64_t[:]
keys: list,
sorted_labels: list[npt.NDArray[np.int64]],
) -> dict[Hashable, npt.NDArray[np.intp]]: ...
def generate_slices(
labels: np.ndarray, ngroups: int # const intp_t[:]
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
def count_level_2d(
mask: np.ndarray, # ndarray[uint8_t, ndim=2, cast=True],
labels: np.ndarray, # const intp_t[:]
max_bin: int,
axis: int,
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=2]
def get_level_sorter(
label: np.ndarray, # const int64_t[:]
starts: np.ndarray, # const intp_t[:]
) -> np.ndarray: ... # np.ndarray[np.intp, ndim=1]
def generate_bins_dt64(
values: npt.NDArray[np.int64],
binner: np.ndarray, # const int64_t[:]
closed: object = ...,
hasnans: bool = ...,
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
def array_equivalent_object(
left: np.ndarray, # object[:]
right: np.ndarray, # object[:]
) -> bool: ...
def has_infs(arr: np.ndarray) -> bool: ... # const floating[:]
def get_reverse_indexer(
indexer: np.ndarray, # const intp_t[:]
length: int,
) -> npt.NDArray[np.intp]: ...
def is_bool_list(obj: list) -> bool: ...
def dtypes_all_equal(types: list[DtypeObj]) -> bool: ...