50 lines
1.0 KiB
Python
50 lines
1.0 KiB
Python
|
from collections.abc import Sequence
|
||
|
from typing import (
|
||
|
Literal as L,
|
||
|
Any,
|
||
|
SupportsIndex,
|
||
|
)
|
||
|
|
||
|
from numpy._typing import (
|
||
|
NDArray,
|
||
|
ArrayLike,
|
||
|
)
|
||
|
|
||
|
_BinKind = L[
|
||
|
"stone",
|
||
|
"auto",
|
||
|
"doane",
|
||
|
"fd",
|
||
|
"rice",
|
||
|
"scott",
|
||
|
"sqrt",
|
||
|
"sturges",
|
||
|
]
|
||
|
|
||
|
__all__: list[str]
|
||
|
|
||
|
def histogram_bin_edges(
|
||
|
a: ArrayLike,
|
||
|
bins: _BinKind | SupportsIndex | ArrayLike = ...,
|
||
|
range: None | tuple[float, float] = ...,
|
||
|
weights: None | ArrayLike = ...,
|
||
|
) -> NDArray[Any]: ...
|
||
|
|
||
|
def histogram(
|
||
|
a: ArrayLike,
|
||
|
bins: _BinKind | SupportsIndex | ArrayLike = ...,
|
||
|
range: None | tuple[float, float] = ...,
|
||
|
normed: None = ...,
|
||
|
weights: None | ArrayLike = ...,
|
||
|
density: bool = ...,
|
||
|
) -> tuple[NDArray[Any], NDArray[Any]]: ...
|
||
|
|
||
|
def histogramdd(
|
||
|
sample: ArrayLike,
|
||
|
bins: SupportsIndex | ArrayLike = ...,
|
||
|
range: Sequence[tuple[float, float]] = ...,
|
||
|
normed: None | bool = ...,
|
||
|
weights: None | ArrayLike = ...,
|
||
|
density: None | bool = ...,
|
||
|
) -> tuple[NDArray[Any], list[NDArray[Any]]]: ...
|