aoc-2022/venv/Lib/site-packages/numpy/core/getlimits.py

699 lines
24 KiB
Python
Raw Normal View History

"""Machine limits for Float32 and Float64 and (long double) if available...
"""
__all__ = ['finfo', 'iinfo']
import warnings
from ._machar import MachAr
from .overrides import set_module
from . import numeric
from . import numerictypes as ntypes
from .numeric import array, inf, NaN
from .umath import log10, exp2, nextafter, isnan
def _fr0(a):
"""fix rank-0 --> rank-1"""
if a.ndim == 0:
a = a.copy()
a.shape = (1,)
return a
def _fr1(a):
"""fix rank > 0 --> rank-0"""
if a.size == 1:
a = a.copy()
a.shape = ()
return a
class MachArLike:
""" Object to simulate MachAr instance """
def __init__(self, ftype, *, eps, epsneg, huge, tiny,
ibeta, smallest_subnormal=None, **kwargs):
self.params = _MACHAR_PARAMS[ftype]
self.ftype = ftype
self.title = self.params['title']
# Parameter types same as for discovered MachAr object.
if not smallest_subnormal:
self._smallest_subnormal = nextafter(
self.ftype(0), self.ftype(1), dtype=self.ftype)
else:
self._smallest_subnormal = smallest_subnormal
self.epsilon = self.eps = self._float_to_float(eps)
self.epsneg = self._float_to_float(epsneg)
self.xmax = self.huge = self._float_to_float(huge)
self.xmin = self._float_to_float(tiny)
self.smallest_normal = self.tiny = self._float_to_float(tiny)
self.ibeta = self.params['itype'](ibeta)
self.__dict__.update(kwargs)
self.precision = int(-log10(self.eps))
self.resolution = self._float_to_float(
self._float_conv(10) ** (-self.precision))
self._str_eps = self._float_to_str(self.eps)
self._str_epsneg = self._float_to_str(self.epsneg)
self._str_xmin = self._float_to_str(self.xmin)
self._str_xmax = self._float_to_str(self.xmax)
self._str_resolution = self._float_to_str(self.resolution)
self._str_smallest_normal = self._float_to_str(self.xmin)
@property
def smallest_subnormal(self):
"""Return the value for the smallest subnormal.
Returns
-------
smallest_subnormal : float
value for the smallest subnormal.
Warns
-----
UserWarning
If the calculated value for the smallest subnormal is zero.
"""
# Check that the calculated value is not zero, in case it raises a
# warning.
value = self._smallest_subnormal
if self.ftype(0) == value:
warnings.warn(
'The value of the smallest subnormal for {} type '
'is zero.'.format(self.ftype), UserWarning, stacklevel=2)
return self._float_to_float(value)
@property
def _str_smallest_subnormal(self):
"""Return the string representation of the smallest subnormal."""
return self._float_to_str(self.smallest_subnormal)
def _float_to_float(self, value):
"""Converts float to float.
Parameters
----------
value : float
value to be converted.
"""
return _fr1(self._float_conv(value))
def _float_conv(self, value):
"""Converts float to conv.
Parameters
----------
value : float
value to be converted.
"""
return array([value], self.ftype)
def _float_to_str(self, value):
"""Converts float to str.
Parameters
----------
value : float
value to be converted.
"""
return self.params['fmt'] % array(_fr0(value)[0], self.ftype)
_convert_to_float = {
ntypes.csingle: ntypes.single,
ntypes.complex_: ntypes.float_,
ntypes.clongfloat: ntypes.longfloat
}
# Parameters for creating MachAr / MachAr-like objects
_title_fmt = 'numpy {} precision floating point number'
_MACHAR_PARAMS = {
ntypes.double: dict(
itype = ntypes.int64,
fmt = '%24.16e',
title = _title_fmt.format('double')),
ntypes.single: dict(
itype = ntypes.int32,
fmt = '%15.7e',
title = _title_fmt.format('single')),
ntypes.longdouble: dict(
itype = ntypes.longlong,
fmt = '%s',
title = _title_fmt.format('long double')),
ntypes.half: dict(
itype = ntypes.int16,
fmt = '%12.5e',
title = _title_fmt.format('half'))}
# Key to identify the floating point type. Key is result of
# ftype('-0.1').newbyteorder('<').tobytes()
# See:
# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure
_KNOWN_TYPES = {}
def _register_type(machar, bytepat):
_KNOWN_TYPES[bytepat] = machar
_float_ma = {}
def _register_known_types():
# Known parameters for float16
# See docstring of MachAr class for description of parameters.
f16 = ntypes.float16
float16_ma = MachArLike(f16,
machep=-10,
negep=-11,
minexp=-14,
maxexp=16,
it=10,
iexp=5,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(f16(-10)),
epsneg=exp2(f16(-11)),
huge=f16(65504),
tiny=f16(2 ** -14))
_register_type(float16_ma, b'f\xae')
_float_ma[16] = float16_ma
# Known parameters for float32
f32 = ntypes.float32
float32_ma = MachArLike(f32,
machep=-23,
negep=-24,
minexp=-126,
maxexp=128,
it=23,
iexp=8,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(f32(-23)),
epsneg=exp2(f32(-24)),
huge=f32((1 - 2 ** -24) * 2**128),
tiny=exp2(f32(-126)))
_register_type(float32_ma, b'\xcd\xcc\xcc\xbd')
_float_ma[32] = float32_ma
# Known parameters for float64
f64 = ntypes.float64
epsneg_f64 = 2.0 ** -53.0
tiny_f64 = 2.0 ** -1022.0
float64_ma = MachArLike(f64,
machep=-52,
negep=-53,
minexp=-1022,
maxexp=1024,
it=52,
iexp=11,
ibeta=2,
irnd=5,
ngrd=0,
eps=2.0 ** -52.0,
epsneg=epsneg_f64,
huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4),
tiny=tiny_f64)
_register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf')
_float_ma[64] = float64_ma
# Known parameters for IEEE 754 128-bit binary float
ld = ntypes.longdouble
epsneg_f128 = exp2(ld(-113))
tiny_f128 = exp2(ld(-16382))
# Ignore runtime error when this is not f128
with numeric.errstate(all='ignore'):
huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4)
float128_ma = MachArLike(ld,
machep=-112,
negep=-113,
minexp=-16382,
maxexp=16384,
it=112,
iexp=15,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-112)),
epsneg=epsneg_f128,
huge=huge_f128,
tiny=tiny_f128)
# IEEE 754 128-bit binary float
_register_type(float128_ma,
b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
_register_type(float128_ma,
b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
_float_ma[128] = float128_ma
# Known parameters for float80 (Intel 80-bit extended precision)
epsneg_f80 = exp2(ld(-64))
tiny_f80 = exp2(ld(-16382))
# Ignore runtime error when this is not f80
with numeric.errstate(all='ignore'):
huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4)
float80_ma = MachArLike(ld,
machep=-63,
negep=-64,
minexp=-16382,
maxexp=16384,
it=63,
iexp=15,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-63)),
epsneg=epsneg_f80,
huge=huge_f80,
tiny=tiny_f80)
# float80, first 10 bytes containing actual storage
_register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf')
_float_ma[80] = float80_ma
# Guessed / known parameters for double double; see:
# https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
# These numbers have the same exponent range as float64, but extended number of
# digits in the significand.
huge_dd = nextafter(ld(inf), ld(0), dtype=ld)
# As the smallest_normal in double double is so hard to calculate we set
# it to NaN.
smallest_normal_dd = NaN
# Leave the same value for the smallest subnormal as double
smallest_subnormal_dd = ld(nextafter(0., 1.))
float_dd_ma = MachArLike(ld,
machep=-105,
negep=-106,
minexp=-1022,
maxexp=1024,
it=105,
iexp=11,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-105)),
epsneg=exp2(ld(-106)),
huge=huge_dd,
tiny=smallest_normal_dd,
smallest_subnormal=smallest_subnormal_dd)
# double double; low, high order (e.g. PPC 64)
_register_type(float_dd_ma,
b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf')
# double double; high, low order (e.g. PPC 64 le)
_register_type(float_dd_ma,
b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<')
_float_ma['dd'] = float_dd_ma
def _get_machar(ftype):
""" Get MachAr instance or MachAr-like instance
Get parameters for floating point type, by first trying signatures of
various known floating point types, then, if none match, attempting to
identify parameters by analysis.
Parameters
----------
ftype : class
Numpy floating point type class (e.g. ``np.float64``)
Returns
-------
ma_like : instance of :class:`MachAr` or :class:`MachArLike`
Object giving floating point parameters for `ftype`.
Warns
-----
UserWarning
If the binary signature of the float type is not in the dictionary of
known float types.
"""
params = _MACHAR_PARAMS.get(ftype)
if params is None:
raise ValueError(repr(ftype))
# Detect known / suspected types
key = ftype('-0.1').newbyteorder('<').tobytes()
ma_like = None
if ftype == ntypes.longdouble:
# Could be 80 bit == 10 byte extended precision, where last bytes can
# be random garbage.
# Comparing first 10 bytes to pattern first to avoid branching on the
# random garbage.
ma_like = _KNOWN_TYPES.get(key[:10])
if ma_like is None:
ma_like = _KNOWN_TYPES.get(key)
if ma_like is not None:
return ma_like
# Fall back to parameter discovery
warnings.warn(
f'Signature {key} for {ftype} does not match any known type: '
'falling back to type probe function.\n'
'This warnings indicates broken support for the dtype!',
UserWarning, stacklevel=2)
return _discovered_machar(ftype)
def _discovered_machar(ftype):
""" Create MachAr instance with found information on float types
"""
params = _MACHAR_PARAMS[ftype]
return MachAr(lambda v: array([v], ftype),
lambda v:_fr0(v.astype(params['itype']))[0],
lambda v:array(_fr0(v)[0], ftype),
lambda v: params['fmt'] % array(_fr0(v)[0], ftype),
params['title'])
@set_module('numpy')
class finfo:
"""
finfo(dtype)
Machine limits for floating point types.
Attributes
----------
bits : int
The number of bits occupied by the type.
eps : float
The difference between 1.0 and the next smallest representable float
larger than 1.0. For example, for 64-bit binary floats in the IEEE-754
standard, ``eps = 2**-52``, approximately 2.22e-16.
epsneg : float
The difference between 1.0 and the next smallest representable float
less than 1.0. For example, for 64-bit binary floats in the IEEE-754
standard, ``epsneg = 2**-53``, approximately 1.11e-16.
iexp : int
The number of bits in the exponent portion of the floating point
representation.
machar : MachAr
The object which calculated these parameters and holds more
detailed information.
.. deprecated:: 1.22
machep : int
The exponent that yields `eps`.
max : floating point number of the appropriate type
The largest representable number.
maxexp : int
The smallest positive power of the base (2) that causes overflow.
min : floating point number of the appropriate type
The smallest representable number, typically ``-max``.
minexp : int
The most negative power of the base (2) consistent with there
being no leading 0's in the mantissa.
negep : int
The exponent that yields `epsneg`.
nexp : int
The number of bits in the exponent including its sign and bias.
nmant : int
The number of bits in the mantissa.
precision : int
The approximate number of decimal digits to which this kind of
float is precise.
resolution : floating point number of the appropriate type
The approximate decimal resolution of this type, i.e.,
``10**-precision``.
tiny : float
An alias for `smallest_normal`, kept for backwards compatibility.
smallest_normal : float
The smallest positive floating point number with 1 as leading bit in
the mantissa following IEEE-754 (see Notes).
smallest_subnormal : float
The smallest positive floating point number with 0 as leading bit in
the mantissa following IEEE-754.
Parameters
----------
dtype : float, dtype, or instance
Kind of floating point data-type about which to get information.
See Also
--------
MachAr : The implementation of the tests that produce this information.
iinfo : The equivalent for integer data types.
spacing : The distance between a value and the nearest adjacent number
nextafter : The next floating point value after x1 towards x2
Notes
-----
For developers of NumPy: do not instantiate this at the module level.
The initial calculation of these parameters is expensive and negatively
impacts import times. These objects are cached, so calling ``finfo()``
repeatedly inside your functions is not a problem.
Note that ``smallest_normal`` is not actually the smallest positive
representable value in a NumPy floating point type. As in the IEEE-754
standard [1]_, NumPy floating point types make use of subnormal numbers to
fill the gap between 0 and ``smallest_normal``. However, subnormal numbers
may have significantly reduced precision [2]_.
References
----------
.. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
pp.1-70, 2008, http://www.doi.org/10.1109/IEEESTD.2008.4610935
.. [2] Wikipedia, "Denormal Numbers",
https://en.wikipedia.org/wiki/Denormal_number
"""
_finfo_cache = {}
def __new__(cls, dtype):
try:
dtype = numeric.dtype(dtype)
except TypeError:
# In case a float instance was given
dtype = numeric.dtype(type(dtype))
obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
dtypes = [dtype]
newdtype = numeric.obj2sctype(dtype)
if newdtype is not dtype:
dtypes.append(newdtype)
dtype = newdtype
if not issubclass(dtype, numeric.inexact):
raise ValueError("data type %r not inexact" % (dtype))
obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
if not issubclass(dtype, numeric.floating):
newdtype = _convert_to_float[dtype]
if newdtype is not dtype:
dtypes.append(newdtype)
dtype = newdtype
obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
obj = object.__new__(cls)._init(dtype)
for dt in dtypes:
cls._finfo_cache[dt] = obj
return obj
def _init(self, dtype):
self.dtype = numeric.dtype(dtype)
machar = _get_machar(dtype)
for word in ['precision', 'iexp',
'maxexp', 'minexp', 'negep',
'machep']:
setattr(self, word, getattr(machar, word))
for word in ['resolution', 'epsneg', 'smallest_subnormal']:
setattr(self, word, getattr(machar, word).flat[0])
self.bits = self.dtype.itemsize * 8
self.max = machar.huge.flat[0]
self.min = -self.max
self.eps = machar.eps.flat[0]
self.nexp = machar.iexp
self.nmant = machar.it
self._machar = machar
self._str_tiny = machar._str_xmin.strip()
self._str_max = machar._str_xmax.strip()
self._str_epsneg = machar._str_epsneg.strip()
self._str_eps = machar._str_eps.strip()
self._str_resolution = machar._str_resolution.strip()
self._str_smallest_normal = machar._str_smallest_normal.strip()
self._str_smallest_subnormal = machar._str_smallest_subnormal.strip()
return self
def __str__(self):
fmt = (
'Machine parameters for %(dtype)s\n'
'---------------------------------------------------------------\n'
'precision = %(precision)3s resolution = %(_str_resolution)s\n'
'machep = %(machep)6s eps = %(_str_eps)s\n'
'negep = %(negep)6s epsneg = %(_str_epsneg)s\n'
'minexp = %(minexp)6s tiny = %(_str_tiny)s\n'
'maxexp = %(maxexp)6s max = %(_str_max)s\n'
'nexp = %(nexp)6s min = -max\n'
'smallest_normal = %(_str_smallest_normal)s '
'smallest_subnormal = %(_str_smallest_subnormal)s\n'
'---------------------------------------------------------------\n'
)
return fmt % self.__dict__
def __repr__(self):
c = self.__class__.__name__
d = self.__dict__.copy()
d['klass'] = c
return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s,"
" max=%(_str_max)s, dtype=%(dtype)s)") % d)
@property
def smallest_normal(self):
"""Return the value for the smallest normal.
Returns
-------
smallest_normal : float
Value for the smallest normal.
Warns
-----
UserWarning
If the calculated value for the smallest normal is requested for
double-double.
"""
# This check is necessary because the value for smallest_normal is
# platform dependent for longdouble types.
if isnan(self._machar.smallest_normal.flat[0]):
warnings.warn(
'The value of smallest normal is undefined for double double',
UserWarning, stacklevel=2)
return self._machar.smallest_normal.flat[0]
@property
def tiny(self):
"""Return the value for tiny, alias of smallest_normal.
Returns
-------
tiny : float
Value for the smallest normal, alias of smallest_normal.
Warns
-----
UserWarning
If the calculated value for the smallest normal is requested for
double-double.
"""
return self.smallest_normal
@property
def machar(self):
"""The object which calculated these parameters and holds more
detailed information.
.. deprecated:: 1.22
"""
# Deprecated 2021-10-27, NumPy 1.22
warnings.warn(
"`finfo.machar` is deprecated (NumPy 1.22)",
DeprecationWarning, stacklevel=2,
)
return self._machar
@set_module('numpy')
class iinfo:
"""
iinfo(type)
Machine limits for integer types.
Attributes
----------
bits : int
The number of bits occupied by the type.
min : int
The smallest integer expressible by the type.
max : int
The largest integer expressible by the type.
Parameters
----------
int_type : integer type, dtype, or instance
The kind of integer data type to get information about.
See Also
--------
finfo : The equivalent for floating point data types.
Examples
--------
With types:
>>> ii16 = np.iinfo(np.int16)
>>> ii16.min
-32768
>>> ii16.max
32767
>>> ii32 = np.iinfo(np.int32)
>>> ii32.min
-2147483648
>>> ii32.max
2147483647
With instances:
>>> ii32 = np.iinfo(np.int32(10))
>>> ii32.min
-2147483648
>>> ii32.max
2147483647
"""
_min_vals = {}
_max_vals = {}
def __init__(self, int_type):
try:
self.dtype = numeric.dtype(int_type)
except TypeError:
self.dtype = numeric.dtype(type(int_type))
self.kind = self.dtype.kind
self.bits = self.dtype.itemsize * 8
self.key = "%s%d" % (self.kind, self.bits)
if self.kind not in 'iu':
raise ValueError("Invalid integer data type %r." % (self.kind,))
@property
def min(self):
"""Minimum value of given dtype."""
if self.kind == 'u':
return 0
else:
try:
val = iinfo._min_vals[self.key]
except KeyError:
val = int(-(1 << (self.bits-1)))
iinfo._min_vals[self.key] = val
return val
@property
def max(self):
"""Maximum value of given dtype."""
try:
val = iinfo._max_vals[self.key]
except KeyError:
if self.kind == 'u':
val = int((1 << self.bits) - 1)
else:
val = int((1 << (self.bits-1)) - 1)
iinfo._max_vals[self.key] = val
return val
def __str__(self):
"""String representation."""
fmt = (
'Machine parameters for %(dtype)s\n'
'---------------------------------------------------------------\n'
'min = %(min)s\n'
'max = %(max)s\n'
'---------------------------------------------------------------\n'
)
return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max}
def __repr__(self):
return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__,
self.min, self.max, self.dtype)